
Operating System Support for Efficient Virtual Memory

A THESIS

SUBMITTED FOR THE DEGREE OF

Doctor of Philosophy

IN THE

Faculty of Engineering

BY

Ashish Panwar

Computer Science and Automation

Indian Institute of Science

Bangalore – 560 012 (INDIA)

February, 2022

Declaration of Originality

I, Ashish Panwar, with SR No. 04-04-00-10-12-18-1-15943 hereby declare that the mate-

rial presented in the thesis titled

Operating System Support for Efficient Virtual Memory

represents original work carried out by me in the Department of Computer Science and

Automation at Indian Institute of Science during the years 2018-2022.

With my signature, I certify that:

• I have not manipulated any of the data or results.

• I have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.

• I have explicitly acknowledged all collaborative research and discussions.

• I have understood that any false claim will result in severe disciplinary action.

• I have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements

are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Advisor Signature

1

© Ashish Panwar

February, 2022

All rights reserved

DEDICATED TO

Dr. Akshi Vashistha and Aayansh Panwar

my wife and our son

Acknowledgements

I owe a lot of gratitude to many amazing people who have helped me directly or indirectly to

come so far. This dissertation would be incomplete without acknowledging their support.

First and foremost, I want to thank my wonderful research supervisors Prof. K. Gopinath

and Prof. Arkaprava Basu. They have taught me so many things over the years including

how to conduct research and convey research ideas. Their depth and breadth of knowledge

in computer science and otherwise amazes me to date. They have been the pillar of support

during my tough times. Most importantly, I want to thank my advisors for showing immense

faith in me and providing me the freedom to explore my ideas at different stages of this journey.

I want to extend many thanks to my co-authors whose contributions have been invaluable

for this dissertation: Prof. Sorav Bansal, Prof. Abhishek Bhattacharjee, Prof. Timothy Roscoe,

Dr. Jayneel Gandhi, Dr. Aravinda Prasad, Dr. Reto Achermann, Venkat Sri Sai Ram, Akash

Panda, and Naman Patel. I have greatly benefited from our discussions over the years.

I want to thank VMware Research for having me as an intern during the summer of 2019.

Special thanks to Dr. Jayneel Gandhi for being a wonderful support system and an incredible

mentor during and after my internship. The three months spent at VMware was a wonderful

learning experience for me where I got to interact with esteemed researchers from the computer

systems community.

I thank all my friends from CSA and IISc, including friends from the Computer Architecture

and Systems Lab (CASL) and Computer Systems Lab (CSL). This includes current and former

students: Naman Patel, Sandeep Kumar, Priyanka Singla, Poorna, Aripth K, Ajinkya Rajput,

Abhishek Dubey, Shweta Pandey, Ajay Ashok Nayak, Rajat Jain, Pratheek B, Neha Jawalkar,

Sujay Yadalam, Jaya Jyothiswaroop Kotni, Ravi Shreyas Anupindi, Aditya K Kamath, Sandesh

Singh Patel, and Kingshuk Majumdar. I will always cherish the moments we have spent together

at IISc including our technical discussions as well as time spent in leisure activities such as

playing in the gymkhana or having meals together. This journey has been memorable because

of such wonderful friends.

I want to thank the staff members of the CSA department. Special thanks to Ms. Kushael,

i

Acknowledgements

Mrs. Padmavathi, Ms. Meenakshi, and Ms. Nishitha for their hard work and dedication that

ensured the smooth handling of academic requirements. I thank Mr. Akhshay Nath for helping

with technical requirements time and again.

I also want to thank the Confederation of Indian Industry, Government of India, and Mi-

crosoft Research Lab India for supporting me through the Prime Minister’s Fellowship Scheme

for Doctoral Research. I appreciate all the support received from my industry mentor Dr.

Muthian Sivathanu from Microsoft Research. I thank Mr. Ravi Hira, Ms. Neha Gupta, and

Ms. Shalini Sharma from CII for taking care of the formal requirements of the fellowship

program.

Finally, I want to express my deepest gratitude to my entire family – my parents and sisters.

I cannot thank my wife Dr. Akshi Vashistha enough. She has been the backbone of this thesis

and I cannot imagine writing it without her endless love and support.

ii

Abstract

Computers rely on the virtual memory abstraction to simplify programming, portability, phys-

ical memory management and ensure isolation among co-running applications. However, it

creates a layer of indirection in the critical path of execution wherein the processor needs to

translate an application-generated virtual address into the corresponding physical address be-

fore performing the computation. To accelerate the virtual-to-physical address translation,

processors cache recently used addresses in Translation Lookaside Buffers (TLBs).

Unfortunately, modern data-centric applications executing on large memory servers experi-

ence frequent TLB misses. The processor services TLB misses by walking the in-memory page

tables that often involves accessing physical memory. Consequently, the processor spends 30-

50% of total cycles in servicing TLB misses alone for many big-data applications. Virtualization

and non-uniform memory access (NUMA) architectures in multi-socket servers further exacer-

bate this overhead. Virtualization adds an additional level of address translation while NUMA

can increase the latency of accessing page tables residing on a remote socket. The address

translation overhead will increase further with deeper page tables and multi-tiered memory

systems in newer and upcoming systems. In short, virtual memory is showing its age in the era

of data-centric computing.

In this thesis, we propose ways to moderate the overhead of virtual-to-physical address

translation. The majority of this thesis focuses on huge pages. Processor designers have invested

significant hardware in supporting huge pages to reduce the number and cost of TLB misses

e.g., x86 architecture supports 2MB and 1GB huge pages. However, we find that operating

systems often fail to harness the full potential of huge pages. This thesis highlights the pitfalls

associated with the current huge page management strategies and proposes various operating

system enhancements to maximize the benefits of huge pages. We also address the effect of non-

uniform memory accesses on address translation with NUMA-aware page table management.

A key objective of this thesis is to avoid modifying the applications or adding new features

to the hardware. Therefore, all the solutions discussed in this thesis apply to current hardware

and remain transparent to the applications. All of our contributions are open-sourced.

iii

Publications based on this Thesis

1. [ASPLOS’18] Making Huge Pages Actually Useful

Ashish Panwar, Aravinda Prasad and K. Gopinath

In proceedings of the 23rd ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Williamsburg, VA, USA, April, 2018.

2. [ASPLOS’19] HawkEye: Efficient Fine-grained OS Support for Huge Pages

Ashish Panwar, Sorav Bansal and K. Gopinath

In proceedings of the 24th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Providence, RI, USA, April, 2019.

3. [MICRO’21] Trident: Harnessing Architectural Resources for All Page Sizes

on x86 Systems

Ashish Panwar*, Venkat Sri Sai Ram* and Arkaprava Basu

* Joint first authors.

To appear in proceedings of the 54th IEEE/ACM International Symposium on Microar-

chitecture, October, 2021.

4. [ASPLOS’21] Fast Local Page-Tables for Virtualized NUMA Servers

Ashish Panwar, Reto Achermann, Arkaprava Basu, Abhishek Bhattacharjee, K. Gopinath

and Jayneel Gandhi

In proceedings of the 26th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, April, 2021 (virtual).

iv

Contents

Acknowledgements i

Abstract iii

Publications based on this Thesis iv

Contents v

List of Figures x

List of Tables xv

1 Introduction 1

1.1 Benefits of virtual memory . 1

1.2 The cost of virtual memory . 2

1.3 Problem statement . 5

1.4 Contributions of this dissertation . 6

1.5 Organization of this dissertation . 8

2 Making Huge Page Allocation Feasible 9

2.1 Introduction . 9

2.2 Background on Physical Memory Management 11

2.2.1 Unmovable pages . 11

2.2.2 Memory allocation . 13

2.2.3 RCU and deferred objects . 13

2.2.4 Fragmentation mitigation techniques . 13

2.2.4.1 Anti-fragmentation . 14

2.2.4.2 Defragmentation using memory compaction 14

v

CONTENTS

2.3 A detailed analysis of fragmentation . 15

2.3.1 Memory allocation . 15

2.3.2 The invisibility of hybrid pageblocks . 16

2.3.2.1 Fragmentation via pollution . 16

2.3.2.2 LIU migration . 17

2.3.2.3 Experimental analysis of fragmentation 18

2.3.3 Delayed reclamation of deferred objects 18

2.3.4 Large memory large problems . 19

2.3.5 Impact of fragmentation in virtualized systems 21

2.4 Understanding and addressing the root cause . 21

2.4.1 Augmenting fragmentation with unmovability 22

2.4.2 Making operating system responsibilities explicit 23

2.5 Illuminator: Design and Implementation . 23

2.5.1 Explicit management of hybrid pageblocks 24

2.5.1.1 Minimizing UI by mitigating fragmentation via pollution 24

2.5.1.2 Eliminating LIU migration . 25

2.5.2 Reclaiming pageblocks from the hybrid pool 25

2.5.3 Eliminating susceptibility to page locations 26

2.5.4 Timely reclamation of deferred objects 26

2.5.5 Implementation notes . 27

2.6 Evaluation . 28

2.6.1 Experimental setup and workloads . 28

2.6.2 The cost model for memory compaction 28

2.6.3 Huge page allocations with stress-highalloc 29

2.6.4 Performance results on bare-metal . 30

2.6.4.1 Overall performance improvement 31

2.6.4.2 Latency and OS jitter . 33

2.6.4.3 Performance isolation . 33

2.6.5 Performance in virtualized environments 35

2.7 Discussion . 36

2.8 Summary . 37

3 Fine-grained Huge Page Management 38

3.1 Introduction . 38

3.2 Motivation . 40

vi

CONTENTS

3.2.1 Address translation overhead vs. memory bloat 40

3.2.2 Page fault latency vs. number of page faults 42

3.2.3 Huge page allocation across multiple processes 43

3.2.4 How to capture address translation overheads? 45

3.3 Design and Implementation . 46

3.3.1 Asynchronous page pre-zeroing . 47

3.3.2 Managing memory bloat vs. address translation performance 48

3.3.3 Fine-grained huge page promotion . 50

3.3.4 Huge page allocation across multiple processes 52

3.3.5 Limitations and discussion . 52

3.4 Evaluation . 53

3.4.1 Performance advantages of fine-grained huge page promotion 54

3.4.2 Fairness advantages of fine-grained huge page promotion 58

3.4.3 Performance in virtualized systems . 65

3.4.4 Bloat vs. performance . 65

3.4.5 Fast page faults with async page pre-zeroing 67

3.4.6 Performance overheads of HawkEye . 68

3.4.7 Comparison between Hawk-PMU and HawkEye-G 70

3.5 Summary . 70

4 Leveraging Architectural Support for All Page Sizes 71

4.1 Introduction . 71

4.2 Methodology . 74

4.3 How useful are 1GB large pages? . 75

4.3.1 1GB pages in native execution . 75

4.3.2 1GB pages under virtualized execution 77

4.3.3 Importance of using all large page sizes 78

4.4 Trident: Dynamic allocation of all page sizes . 80

4.4.1 Design and implementation . 81

4.4.1.1 Managing 1GB physical memory chunks 81

4.4.1.2 Allocating large pages during page fault 81

4.4.1.3 Large page promotion . 82

4.4.2 Smart compaction . 85

4.5 Tridentpv: Paravirtualizing Trident . 87

4.6 Evaluation . 89

vii

CONTENTS

4.6.1 Performance evaluation on bare-metal systems 89

4.6.2 Evaluating Trident’s design components 92

4.6.3 Performance under virtualization . 94

4.7 Summary . 96

5 Mitigating NUMA Effect on Address Translation 97

5.1 Introduction . 97

5.2 Analysis of 2D page table placement . 100

5.2.1 Analysis of thin workloads . 101

5.2.2 Analysis of wide workloads . 103

5.3 vMitosis: Design and Implementation . 105

5.3.1 Design overview . 106

5.3.2 Page table migration . 107

5.3.2.1 Page table migration in NV (NUMA-visible) configuration . . . 107

5.3.2.2 Page table migration in NUMA-oblivious NO-P and NO-F con-

figurations . 108

5.3.2.3 Linux/KVM implementation 108

5.3.3 Page table replication . 109

5.3.3.1 ePT Replication . 109

5.3.3.2 gPT replication in NV (NUMA-visible) configuration 110

5.3.3.3 gPT replication in NO-P (NUMA-oblivious paravirtualized) con-

figuration . 111

5.3.3.4 gPT replication in NO-F (NUMA-oblivious fully virtualized)

configuration . 111

5.3.3.5 Linux/KVM implementation 113

5.3.4 Deploying vMitosis . 113

5.4 Evaluation . 114

5.4.1 Evaluation with page table migration . 114

5.4.2 Evaluation with page table replication 117

5.4.2.1 Page table replication in a NUMA-visible scenario 117

5.4.2.2 Page table replication in a NUMA-oblivious scenario 119

5.4.3 Replication vs. migration of page tables 121

5.4.4 Memory and runtime overhead of vMitosis 123

5.4.5 Summary of results . 125

5.5 Discussion . 125

viii

CONTENTS

5.5.1 Huge (large) pages . 125

5.5.2 Shadow page tables . 126

5.6 Summary . 127

6 Related work 128

7 Conclusion and Looking Forward 134

Bibliography 136

ix

List of Figures

1.1 The toal volume of data or information created, captured, copied and consumed

worldwide (source: [168]). 2

1.2 Example of a page table walk on x86 with 4KB pages that require 4-level page

tables. PFN (page frame number) represents the physical base address of a 4KB

page. With 2MB and 1GB pages, PMD and PUD directly provide the physical

base address of the data page, respectively. 4

2.1 Virtual-to-physical memory mappings. 11

2.2 Physical memory allocation in Linux. The slab allocator allocates kernel objects

while the buddy allocator serves pages to the slab allocator (from the unmovable

pool) and to the user space (from the movable pool). 12

2.3 Two-way classification based anti-fragmentation leads to fragmentation via pol-

lution because the buddy allocator cannot reuse hybrid pageblocks during fall-

backs. For example, pollution of P1 can be avoided by reusing P2 during C→D.

For clarity, hybrid pageblocks are colored yellow in this figure, but the Linux

kernel treats them as either red or green, depending on which pool they belong to. 16

2.4 Rate of pageblock pollution with a synthetic benchmark that repeatedly stress

the buddy and the slab allocator simultaneously. 19

2.5 Execution time of milc with no compaction (none), with asynchronous com-

paction (async) and with synchronous and asynchronous compaction (sync+async)

at 0.75 unmovability index. 20

2.6 Linux creates avoidable fragmentation since its unmovability index is much higher

than a perfect page-clustering algorithm. Illuminator is very close to an ideal

system. 22

2.7 Illuminator explicitly manages hybrid pageblocks in a different pool to prevent

fragmentation via pollution. Prudence helps Illuminator by minimizing callbacks

to alloc pages with timely reclamation of deferred objects. 23

x

LIST OF FIGURES

2.8 Explicit management of hybrid pageblocks improves page clustering. Once P2 is

yielded to the hybrid pool during A→B, it is reused until state K. P1 is added

to the hybrid pool only when P2 fails to allocate memory. 24

2.9 The location of unmovable pages affects the outcome of compaction in the two-

way classification approach. In this case, Linux can allocate a huge page only in

scenario A while Illuminator can allocate huge page in both A and B. 26

2.10 Performance relative to baseline pages at 0.25 (Linux-M), 0.5 (Linux-H) and

0.75 (Linux-C) unmovability indices. Illuminator’s performance is presented once

which is valid for all fragmentation indices considered. Notice that the perfor-

mance in Linux degrades as fragmentation increases resulting in worse than the

performance of baseline pages at 0.75 unmovability index for most applications. 30

2.11 Reduction in the cost of compaction with Illuminator at different fragmentation

levels. 32

2.12 Maximum latency for MySQL read requests from 10 iterations at high fragmenta-

tion level (UI=0.5). 34

2.13 Slowdown for applications (lower is better) while running alongside milc at high

fragmentation. 34

2.14 Performance improvement over Linux-H (UI=0.5) in a virtualized system when

Illuminator is deployed at host, guest and both. 35

3.1 Resident Set Size (RSS) of Redis server across 3 phases: P1 (insert), P2 (delete)

and P3 (insert). 41

3.2 Our design objectives in HawkEye. 47

3.3 Average offset to the first non-zero byte in baseline (4KB) pages. First four bars

represent the average of all workloads in the respective benchmark suite. 50

3.4 A sample representation of access map for three processes A, B and C. 51

3.5 Performance speedup (top sub-figure) and time saved per huge page promotion

(bottom sub-figure) over baseline pages. 54

3.6 Access-coverage in application virtual address space, MMU overhead and the

number of huge page promotions for Graph500. HawkEye reduces MMU over-

head much faster and with fewer huge pages than Linux and Ingens. 55

3.7 Access-coverage in application virtual address space, MMU overhead and the

number of huge page promotions for XSBench. HawkEye reduces MMU overhead

much faster and with fewer huge pages than Linux and Ingens. 56

xi

LIST OF FIGURES

3.8 MMU overheads of three identical instances of Graph500 while running simulta-

neously. Linux allocates huge pages in the order of process creation, and therefore

MMU overheads reduce in the same order. Ingens allocates huge pages fairly but

takes longer to reduce MMU overhead as it allocates many huge pages in TLB

insensitive regions for these applications (low virtual addresses). HawkEye uses

hardware performance counters and access-coverage based huge page promotion

and is therefore more efficient than Linux and Ingens. 59

3.9 Number of huge pages promoted for all three instances of Graph500 over time.

Linux promotes huge pages in the order of process creation (e.g., Graph500-1

followed by Graph500-2, and so on). Ingens promotes huge pages to all instances

at the same rate (overlapping lines not visible in the graph). HawkEye also

promotes huge pages at roughly similar rate to all instances, but based on the

estimated benefits of allocation. 60

3.10 MMU overheads of three identical instances of XSBench while running simultane-

ously. Linux and Ingens takes a long time to reach the most TLB sensitive regions

(high virtual addresses). Therefore, they are unable to reduce MMU overheads

in this case. HawkEye uses hardware performance counters and access-coverage

based huge page promotion and is therefore more efficient than Linux and Ingens. 61

3.11 Number of huge pages promoted for all three instances of XSBench over time.

Linux promotes huge pages in the order of process creation. Ingens promotes

huge pages to all instances at the same rate. HawkEye also promotes huge pages

at roughly similar rate to all instances, but based on the estimated benefits of

huge pages (note that overlapping lines are not clearly visible for Ingens and

HawkEye-G. 62

3.12 Performance speedup over baseline pages of TLB sensitive applications when

they are executed alongside a lightly loaded Redis key-value store in different

orders. 64

3.13 Performance compared to Linux in a virtualized system when HawkEye is applied

at the host, guest and both layers. 66

3.14 Performance normalized to the case of no ballooning in an overcommitted virtu-

alized system. 68

3.15 Performance overhead of async pre-zeroing with and without caching instruc-

tions. The first two bars (NPB and Parsec) represent the average of all workloads

in the respective benchmark suite. 69

xii

LIST OF FIGURES

4.1 Performance impact of different page sizes under native execution. Applications

in shade benefit from 1GB pages. 76

4.2 Performance impact of different page sizes under virtualization. Applications in

shade benefit from 1GB pages. 77

4.3 Total memory mappable with different page sizes. 79

4.4 Relative TLB-miss frequency. 79

4.5 Trident’s large-page promotion algorithm. 83

4.6 Linux’s normal compaction (top) and Trident’s smart-compaction (bottom). . . 85

4.7 Reduction in the number of bytes copied by smart-compaction. 87

4.8 Traditional copy-based versus Tridentpv’s copy-less page promotion. 88

4.9 Performance under no fragmentation. 90

4.10 Performance under fragmentation. 91

4.11 Performance analysis of different components of Trident. 93

4.12 Performance under virtualization. 95

4.13 Tridentpv’s performance under fragmented gPA. 95

5.1 Performance impact of gPT and ePT placement configurations on Thin work-

loads. Details of the configurations are discussed in Table 5.3. 102

5.2 Analysis of 2D page table walk of Wide workloads on NUMA-visible and NUMA-

oblivious VMs on a 4-socket machine. Bar for each socket (represented by the

number) shows the fraction of 2D page table walks that results in Local-Local,

Local-Remote, Remote-Local or Remote-Remote leaf PTE access in gPT and

ePT, when TLB misses are serviced for one of the threads running on that socket.104

5.3 Workload performance with and without ePT and gPT migration. Bars are

normalized to base case (LL). Absolute runtime for the base case in brackets.

Numbers at the top show speedup with vMitosis over the worst-case setting (RRI).115

5.4 NUMA-visible: Workload performance with and without vMitosis, normalized

to the base case (F). Runtime (in seconds) for the base case are in brackets.

Numbers at the top show speedup with vMitosis over the corresponding memory

allocation policy of Linux/KVM. 118

5.5 NUMA-oblivious: Workload performance, normalized to the base case (OF).

Runtime for the base case in brackets. Numbers on top of the bars show speedup

with vMitosis wherever significant. Configuration details are listed in the table

at the top. 120

xiii

LIST OF FIGURES

5.6 Throughput of a Thin Memcached instance before, during and after migration.

In the NUMA-visible case (a), the guest OS migrates Memcached. In the NUMA-

oblivious case (b), the hypervisor migrates Memcached’s VM. 122

xiv

List of Tables

1.1 Number of entries for each page size in L1 dTLB and L2 TLB across different

generations of Intel x86 systems. Resource allocation for huge pages is on the

rise particularly in the L2 TLB. 6

2.1 Distribution of unmovable pages. Illuminator produces only about 5% hybrid

pageblocks compared to Linux. 18

2.2 Summary of workloads evaluated. 27

2.3 Software counters used to measure the cost of memory compaction. 28

2.4 Cost of each activity in the Linux kernel. We take Wi to be 20. However, the

cost of compaction is not heavily dependent on its exact value. 29

2.5 Huge page allocation success rate for stress-highalloc which tries to allocate

90% of memory as huge pages. 29

2.6 Number of huge pages allocated/promoted. Allocation happens in the page fault

handler while promotion is done by the khugepaged kernel thread in background. 31

2.7 Kernel mode execution time (in seconds) and the percentage of total time spent

in the kernel mode for milc. 33

3.1 Page faults, allocation latency and performance for a microbenchmark with

≈100GB memory allocation. 43

3.2 Number of TLB sensitive applications in popular benchmark suites. We consider

an application to be TLB sensitive if its address translation overhead is more than

3%. 45

3.3 Memory characteristics i.e., resident set size (RSS), working set size (WSS),

address translation overheads and speedup huge pages provide over base pages

for NPB workloads. % cycles denote the fraction of total CPU cycles spend in

address translation. 46

3.4 Methodology used to measure MMU Overhead [114]. 46

xv

LIST OF TABLES

3.5 Execution time of 3 instances of Graph500 and XSBench when executed simul-

taneously. Values in parentheses represent speedup over baseline pages. 58

3.6 Experimental setup for configurations used to evaluate a virtualized system. . . 65

3.7 Memory consumption and throughput of Redis key-value store with different

huge page management systems. 66

3.8 Performance implications of asynchronous page zeroing. Values for Redis rep-

resent throughput (higher is better); all other values represent time in seconds

(lower is better). 67

3.9 Comparison between HawkEye-PMU and HawkEye-G for two sets of workloads.

Values in parentheses represent speedup over baseline pages (whereever significant). 70

4.1 Specification of the experimental system . 74

4.2 Specifications of the benchmarks. 74

4.3 Comparison of 1GB and 2MB pages allocated via different mechanisms employed

in Trident (without physical memory fragmentation). 84

4.4 Comparison of 1GB and 2MB pages allocated via different mechanisms employed

in Trident (with physical memory fragmentation). 84

4.5 Percentage 1GB memory allocation failures . 92

4.6 Tail latency (ms) for Redis and Memcached . 92

5.1 NUMA support for page tables in state-of-the-art systems. (*) Replication is

possible in Mitosis only if the server’s NUMA topology is exposed to the guest OS.100

5.2 Detailed description of the workloads. 101

5.3 CPU, data, gPT and ePT placement for different configurations. A and B rep-

resent two different sockets in the system (e.g., A=0, B=1). “I” represents

interference due to a different workload. 102

5.4 Migration and replication of 2D page tables in current state-of-the-art virtualized

systems. NV: NUMA-visible, NO-P: NUMA-oblivious-paravirtualized, NO-F:

NUMA-oblivious-fully virtualized. 106

5.5 Migration and replication of 2D page tables in vMitosis. NV: NUMA-visible,

NO-P: NUMA-oblivious-paravirtualized, NO-F: NUMA-oblivious-fully virtualized.106

5.6 Time to transfer a cache line (in ns) between different vCPU pairs. Bold un-

derlined entries represent vCPU pairs wherein both vCPUs are scheduled on the

same NUMA socket. The table is shown partially from the 192x192 matrix we

profiled on our system. 112

xvi

LIST OF TABLES

5.7 Throughput (measured as million PTEs updated per second) of different system

calls when invoked with different virtual memory region sizes using 4KB map-

pings. Numbers in parentheses represent throughput normalized to Linux/KVM. 124

5.8 Memory footprint of 2D page tables for a 1.5TB workload using 4KB pages

with different replication factors. Numbers in parentheses represent memory

consumption of page tables as a fraction of workload size. 124

xvii

Chapter 1

Introduction

The virtual memory abstraction has enabled the software ecosystem to flourish unhindered by

decoupling software’s view of memory from that of the hardware. Thanks to virtual memory, a

programmer can write and compile software once on her computer while the resultant software

binary can run on many computers with possibly very different amounts of physical memory.

Numerous benefits of virtual memory make it an indispensable part of the computing stack

today. However, virtual memory is not a free lunch. The mounting overheads of virtual memory

abstraction in the era of data-centric computing made us wonder what we can do to moderate

its overhead without sacrificing its benefits while also being sensitive to the needs of modern

computing, e.g., fairness under multi-tenancy. This thesis explores this broad question from

different angles.

1.1 Benefits of virtual memory

Virtual memory provides many key benefits that are hard for today’s software stack to sacrifice.

Ease of programming and portability: Virtual memory provides the illusion of a private

memory address space (called virtual address space) to each application. Applications perform

their computation using virtual addresses that are translated into physical addresses by the

hardware and operating system (OS), transparently to the application. This simplifies pro-

gramming as developers need not worry about managing the physical memory. Further, the

same program can be executed on different machines with varying physical memory capacity,

simplifying portability.

Fine-grained memory protection: Virtual memory operates at page granularity i.e., the

virtual and physical address spaces are divided into page size units. With the help of the OS,

the processor provides the ability to use different memory access permissions in different parts

1

2 5 6.5 9 12.5 15.5 18 26 33 41
64.2

79
97

120
147

181

0

40

80

120

160

200

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

Da
ta

 v
ol

um
e

(z
et

ta
by

te
s)

Figure 1.1: The toal volume of data or information created, captured, copied and consumed
worldwide (source: [168]).

of the applications (e.g., users can mark some data as read-only).

Resource sharing and isolation: A virtual memory page can be mapped in any physical

page frame of the same size. This allows two or more applications to share the same physical

server wherein they can use different parts of physical memory. The hardware and OS co-design

ensures that a process cannot access unauthorized data of a different process.

Memory over-subscription: Virtual memory allows an application to execute on a machine

that provides less physical memory than its requirements. The hardware and OS co-ordinate to

support memory over-subscription so that frequently accessed data resides in physical memory

while the rest of the data can be stored on disk.

1.2 The cost of virtual memory

The amount of data being generated and consumed is increasing exponentially. Figure 1.1

shows the total volume of data generated and processed, including predictions for upcoming

years, for each year between 2010 and 2025. This shows a growth of two orders of magnitude

in the volume of data in less than two decades. To transform these enormous amounts of data

into actionable information, we need to compute upon it, which implies accessing vast amounts

of data from physical memory.

Applications access the data using virtual addresses. Converting an application-generated

virtual address into the corresponding physical address where the data resides is a prerequisite

for the computation. A processor caches recently used addresses in (often multi-level) hardware

structures called Translation Lookaside Buffers (TLBs) to accelerate the virtual-to-physical ad-

dress translation. If a translation is found in the TLB, there is little virtual-to-physical address

translation overhead. However, servicing TLB misses are slow and are the primary source

2

of address translation overheads. Unfortunately, while the application’s memory footprint is

increasing at an unprecedented rate, it is not possible to scale up TLB sizes in the same propor-

tion due to fundamental hardware limitations. Consequently, TLB misses and thus the address

translation overheads due to virtual memory are sky-rocketing [55, 58, 136].

The size of TLBs cannot be increased arbitrarily due to many fundamental limitations. For

example, a TLB is looked up on every load/store instruction. Consequently, even if it has a few

entries, TLB’s size adds to the power budget and could impact the CPU cycle time. Previous

works and industry studies have demonstrated that TLBs could be an energy-hungry part of

a processor, and it alone can account for about 6% of total chip power [166, 53, 113] and is

known to show up as a hotspot due to frequent lookups [155].

Such limitations leave a large gap between the amount of memory accessible to an applica-

tion and the amount of address translation coverage provided by the TLBs. In turn, the limited

coverage of TLBs entails frequent TLB misses for large memory applications. Further, TLB

misses often involve accessing physical memory – adding significant latency to address transla-

tion. For example, accessing physical memory on an Intel Xeon Skylake server takes about 250

CPU cycles whereas an L2 TLB access requires only nine cycles. High latency of virtual-to-

physical address translation can therefore slow down an application considerably [55, 91, 121].

The overheads further worsen under virtualization as it adds an additional level of address

translation for applications executing within virtual machines [136, 91].

The address translation mechanism: The hardware and OS coordinate for virtual-to-

physical address translation. The translation occurs at the granularity of a “page”: x86 systems

use 4KB page size, by default. Here, the OS creates address mappings while allocating and

de-allocating physical memory and stores them in per-process page tables.

On x86 systems, the page table is a multi-level radix tree. The number of levels in the tree

depends on the page size. For example, if 4KB pages are used, then a page table is a 4-level

tree. These levels are referred to as PGD (page global directory), PUD (page upper directory),

PMD (page middle directory) and PTE (page table entry).

Current x86 systems represent each virtual address with 48 bits. These 48 bits are divided

into five parts during address translation: four parts of nine bits each index in different levels

of the page table tree while the remaining 12 bits represent the offset in the 4KB page.

On a context switch, the OS loads the processor’s control register cr3 with the physical

address of the root of the page table tree i.e., PGD. The CPU first looks up a virtual address

in the TLB to identify its physical address. Current x86 systems use 2-level TLBs per core,

referred to as level-1 (L1) and level-2 (L2), to balance the capacity and look up latency of caching

structures. If the address translation is present in either L1 or L2 TLB, the CPU continues

3

cr3
PFN

PFN

PFN

PFN

11-020-1229-2138-3047-39

Base +
offset

Physical
address

48-bit virtual address

PGD

PUD

PMD
PTE

Cached in PWCs Cached in TLBs

Figure 1.2: Example of a page table walk on x86 with 4KB pages that require 4-level page
tables. PFN (page frame number) represents the physical base address of a 4KB page. With
2MB and 1GB pages, PMD and PUD directly provide the physical base address of the data
page, respectively.

with regular operations. Otherwise, it initiates a page table walk to fetch the translation from

page tables and stores it in the TLB for future references. Figure 1.2 provides an overview of

a page table walk on x86 systems using 4-level page tables.

Modern processors employ various mechanisms to reduce the cost of address translation,

e.g., x86 systems cache entries from the higher levels of the page tables (PGD, PUD and PMD)

in page walk caches (PWCs) [59]. Further, current x86 systems employ two page table walkers

per core to hide the effect of long latency address translation. Unfortunately, the overhead

of virtual-to-physical address translation continues to be a significant performance concern for

data-centric applications. For example, Google recently reported that many of their data-center

workloads spend 20-30% of total CPU cycles in address translation alone [106].

Address translation under virtualization: Virtualization adds one more layer of indirec-

tion to address translation. Virtualized systems employ two levels of page tables where (1) the

guest page tables translate guest virtual addresses (gVA) to guest physical addresses (gPA),

and (2) the extended page tables translate gPA to host physical addresses (hPA) [58]. The

4

TLB stores a direct mapping from gVA to hPA for fast translation. On a TLB miss, the hard-

ware page table walker needs to do a 2D traversal of both page tables to resolve the missing

translation. This results in up to 24 memory accesses with four level page tables compared to

only up to 4 without virtualization [92]. Therefore, virtual-to-physical address translation is

significantly more expensive under virtualization [92, 91, 136].

Effect of non-uniform memory access latency on address translation: Memory ac-

cess latency is often non-uniform on modern hardware. Large servers are often built using

multi-socket architectures where multiple CPUs are connected together and physical memory

is distributed across all CPUs [63, 78, 123]. Each CPU can access its local memory much faster

in such systems than accessing memory attached to a remote socket. On our experimental 4-

socket Intel Xeon Cascade Lake server, accessing a remote memory object takes around 140ns,

whereas local memory access latency is about 90ns. The effect of non-uniform memory access

(NUMA) latency also affects the virtual-to-physical address translation because a page table

walk may involve one or more high latency accesses [39].

1.3 Problem statement

The overhead of virtual-to-physical address translation is already a big performance concern.

These overheads are likely to increase in the future. For example, the advent of denser non-

volatile memory technologies promises to increase physical memory capacity significantly [111,

137]. This would further widen the gap between TLB coverage and physical memory size. Fur-

ther, future systems would require deeper page tables to support large address spaces. Notably,

the Linux kernel has already incorporated 5-level page tables in its memory management sub-

system [126]. Deeper page tables would therefore require more physical memory accesses for

address translation e.g., up to 35 with 5-level 2D page tables [108]. Therefore, the frequency of

TLB misses, and the cost of each TLB miss would be considerably higher in future systems.

In this dissertation, our objective is to moderate the overhead of virtual-to-physical address

translation. We set out towards this goal while also avoiding modifications to application code

and avoiding additional hardware. Any enhancement requiring application modification faces

the programmer’s inertia to modify “working” code. Hardware changes take time to deploy

and often incur significant design costs and complexity.

To achieve these objectives simultaneously, a significant part of this dissertation focuses

on maximizing the benefits of “huge pages” – an essential hardware feature designed to limit

address translation overheads. Huge pages are widely supported by all major processors today.

5

L1 dTLB L2 TLB
4KB 2MB 1GB 4KB 2MB 1GB

Sandy Bridge (2011) 64 32 4 512 0 0
Haswell (2013) 64 32 4 1024 1024 0
Skylake (2015) 64 32 4 1536 1536 16
Ice Lake (2021) 64 32 8 2048 1024 1024

Table 1.1: Number of entries for each page size in L1 dTLB and L2 TLB across different
generations of Intel x86 systems. Resource allocation for huge pages is on the rise particularly
in the L2 TLB.

Introduction to huge pages: Huge pages increase the granularity of address translation,

in turn improving the performance of virtual memory in two ways. We explain these benefits

using the example of 2MB and 1GB pages available on modern x86 systems. First, a huge page

entry maps a much larger portion of virtual address space in the TLB e.g., 2MB or 1GB. This

significantly increases the coverage of TLBs and reduces TLB misses. Second, huge pages need

smaller page tables. For example, 2MB and 1GB huge pages require only three and two levels

in the page tables, respectively. This reduces the number of memory accesses involved in a page

table walk. Huge pages are also referred to as large pages and superpages. In this dissertation,

we use these terms interchangeably.

Table 1.1 shows that hardware vendors have invested significant resources in huge pages

over the years. For example, L2 TLB did not support huge pages in the Sandy Bridge micro-

architecture launched in 2011 whereas, recently launched Ice Lake systems provide 1024 entries

each for 2MB and 1GB pages in the L2 TLB. Therefore, it is evident that processor vendors

rely on huge pages to minimize address translation overheads. Unfortunately, lack of adequate

memory management algorithms in current operating systems and hypervisors has often led

to disappointing performance results with huge pages in production deployments [7, 8, 12, 17,

2, 75, 72]. This dissertation makes several contributions in highlighting and addressing the

challenges involved in huge page management.

1.4 Contributions of this dissertation

Our contributions span across four systems: Illuminator, HawkEye, Trident and vMitosis [144,

145, 146, 156]. We provide a brief summary of these contributions below:

Illuminator: We bring forth subtle interactions between external physical memory fragmen-

tation and huge pages. External fragmentation leaves free memory in non-contiguous blocks.

Since each huge page must be mapped in contiguous physical memory, external fragmentation

makes allocating huge pages hard for an OS. Unfortunately, recovering from fragmentation is

6

a more complex challenge for an OS because some physical pages cannot be migrated, e.g.,

those occupied by the kernel’s own objects like page tables, inodes, etc. Therefore, such pages

(referred to as unmovable pages in the rest of this dissertation) can permanently fragment the

system and make it impossible to recover contiguous physical memory.

We show that despite proactive measures employed in the memory management subsystem

of Linux, unmovable kernel pages can still deny huge pages to user applications. In a long-

running system, unmovable pages cause high de-fragmentation overheads due to excessive page

migration. Over time, their effects manifest in performance regressions, OS jitter, and latency

spikes. lluminator clusters kernel objects in a subset of physical memory regions and makes it

feasible to allocate huge pages.

HawkEye: In this work, we deal with OS-based huge page management policies that need

to balance complex trade-offs between TLB misses, memory bloat, latency, and the number of

page faults. These trade-offs appear because while huge pages can minimize TLB misses and the

number of page faults, they can increase memory footprint and the latency of page allocation.

Therefore, the OS needs to balance their benefits against undesirable memory footprint and

latency effects.

In addition, we discuss the performance and fairness issues that appear with external mem-

ory fragmentation. Fragmentation creates a mismatch between the application demand for huge

pages and the system’s supply of contiguous physical memory. Therefore, the OS is responsible

for identifying virtual address regions that can benefit the most from huge pages. In such cases,

judicious allocation of huge pages is also essential for fairness, e.g., when multiple tenants share

the same physical server.

In HawkEye, we propose asynchronous page pre-zeroing to simultaneously optimize for

low latency and few page faults. We propose automatic bloat recovery to effectively deal

with the trade-offs between TLB misses and memory bloat at runtime. HawkEye addresses

the performance and fairness challenges by allocating huge pages based on their estimated

profitability. We derive these estimations from hardware performance counters and by profiling

the memory access patterns through page tables.

Trident: Illuminator and HawkEye try to maximize the value of 2MB huge pages. However,

recent findings have shown that even after employing 2MB pages, more than 20% CPU cycles

are wasted in handling TLB misses for data center applications [106]. We notice that this

problem can be addressed by using 1GB huge pages e.g., recent x86 IceLake systems provide

1TB per-core TLB coverage via 1GB pages. Unfortunately, using 1GB pages in current system

designs requires prior reservation of physical memory and explicit hints from the applications.

7

These methods are unsuitable for legacy applications and dynamic workload environments

where prior reservation of physical memory can make a significant part of physical memory

unavailable to the rest of the system.

To overcome this limitation of current systems, we propose a multi-level huge page manage-

ment framework called Trident that judiciously allocates 1GB, 2MB and 4KB pages, transpar-

ently to the applications, as deemed suitable at runtime.

vMitosis: In this work, we first show that despite current operating systems and hypervisors

using sophisticated NUMA memory management techniques, page table walks still need to

access remote memory. These high latency memory accesses delay address translation and

considerably slow down applications. The effect of non-uniform memory access latency is more

pronounced in virtualized systems where nested page table walks require a higher number of

memory accesses than native systems. Interestingly, the slow down observed due to remote

page table accesses can even outweigh that of accessing remote data, even though page tables

consume less than 1% memory of overall application footprint.

vMitosis mitigates the effect of NUMA on page table walks by enabling each core to handle

TLB misses from its local socket. We achieve this by judiciously migrating and replicating page

tables across NUMA sockets.

We have implemented our proposed systems in the Linux OS kernel and KVM hypervisor.

Our optimizations are transparent to the users, and using them does not require any hardware

or application modifications. Our artifacts are publicly available [27, 28, 29, 30].

1.5 Organization of this dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents a comprehensive study

of the interaction between huge pages and physical memory fragmentation and how we address

fragmentation with Illuminator. In Chapter 3, we discuss various other challenges involved in

the management of huge pages and how we address them with HawkEye. Chapter 4 details

the motivation for harnessing hardware support for all page sizes, along with the design and

implementation of Trident. In Chapter 5, we provide a detailed analysis to expose the effect

of non-uniform memory accesses on address translation. We also present the design and imple-

mentation of vMitosis to address these challenges. In Chapter 6, we discuss prior works related

to the mitigation of virtual-to-physical address translation overheads and associated memory

management challenges. We also highlight the key differences between the contributions of this

dissertation and prior work. Finally, we conclude in Chapter 7 and discuss some promising

directions for future work.

8

Chapter 2

Making Huge Page Allocation Feasible

In Chapter 1, we discussed how the increasing cost of virtual-to-physical address translation

has inspired support for huge pages in modern processors. In theory, huge pages can greatly

reduce address translation overhead by minimizing TLB misses and reducing the number of

memory accesses required during page table walks. However, huge pages must be mapped in

contiguous physical memory. Unfortunately, physical memory gets fragmented into smaller

non-contiguous blocks which makes it difficult for an OS to allocate huge pages.

In this chapter, we first discuss how the lack of adequate fragmentation mitigation strategies

affect huge page performance in current systems. We then propose a system called Illuminator

to address the shortcomings of current systems.

Note that, in this chapter, fragmentation refers to external memory fragmentation – a

phenomenon that is responsible for creating many small non-contiguous free memory blocks.

Fragmentation also appears in another form as “internal” fragmentation that refers to act of

allocating more memory than required. We discuss the interaction of huge pages with internal

fragmentation in Chapter 3.

2.1 Introduction

We find that the profitability of huge pages depends on the state of physical memory fragmen-

tation as huge pages must be mapped in contiguous memory [96, 139]. In long-running systems,

unfavorable fragmentation can (and often does) become a source of poor performance.

Users have repeatedly experienced performance degradation, high kernel space CPU utiliza-

tion and latency spikes while using huge pages with important applications such as Hadoop,

MongoDB, Redis and VoltDB [2, 7, 12, 17]. To avoid such issues, most database servers

9

are shipped with huge page feature being disabled or explicitly recommend users to disable

huge pages. Hence, we can safely infer that the huge page support available in hardware for

nearly two decades is not effectively utilized by operating systems. Contrary to a popular

belief in the academic literature that fragmentation is not a critical problem and operating

systems can efficiently recover from fragmentation with memory compaction (i.e., by relocating

pages) [55, 91, 151], we show that fragmentation can indeed cause the aforementioned issues

with huge pages. Our views are also well corroborated by the Linux kernel community discus-

sions [69, 70].

In fact, fragmentation is one of the most frequently visited problems in the Linux kernel

community. We investigated all 36 major Linux kernel releases between version 4.0 (released in

April 2015) and 5.15 (released in Oct 2021), and found that 11 kernel releases have incorporated

some fragmentation related enhancements [127]. Fragmentation is also a major problem of other

operating systems wherein recent reports provide a strong evidence to shows that fragmentation

continues to be a primary hindrance to effective huge page management (e.g., Windows [82]

and MacOS [173]).

This chapter presents a comprehensive study of the interaction of fragmentation with huge

pages in the Linux kernel. We find that the poor handling of unmovable (i.e., kernel) pages,

which are found in many operating system designs, is the root cause of many huge page related

problems. While previous work indicates that the existing OS designs can effectively handle

unmovable pages [116], we believe this to be erroneous at least in the context of long-running

systems.

We identify two major issues to be the root cause of various performance anomalies that

appear with huge pages: 1) fragmentation via pollution, which occurs when memory contigu-

ity is unnecessarily polluted with unmovable pages, and 2) latency-inducing unsuccessful (LIU)

migration, which occurs when the kernel unnecessarily migrates pages from the polluted regions

while attempting to allocate huge pages. While the former often leads to severe fragmentation,

the latter induces latency by increasing the cost of recovering from fragmentation. As fragmen-

tation via pollution increases, the overhead of LIU migration starts to dominate the benefits

of huge pages. Importantly, both fragmentation via pollution and LIU migration occur due to

poor decision making in memory management related subsystems.

With modest changes in the Linux kernel, Illuminator explicitly tracks all unmovable pages

to help various subsystems in avoiding unnecessary work. For example, it helps memory com-

paction in avoiding LIU migration which leads to cost-effective huge page allocations. It also

helps the page allocator in efficiently clustering unmovable pages which in turn reduces fragmen-

tation via pollution. These optimizations provide significant performance improvement across

10

Direct mapping

physical memory

user virtual memory kernel virtual memory
vmalloc/

misc.
hole/
guard

page tables

physical
address

virtual address – base address
of direct mapped region

=address translation
using page tables

Figure 2.1: Virtual-to-physical memory mappings.

native and virtualized systems.

This chapter of the thesis makes the following major contributions:

• We identify how the existing memory management algorithms lead to various performance

anomalies often experienced while using huge pages in the real world (see Section 2.3).

• We present Illuminator, a simple memory management framework that effectively miti-

gates fragmentation and makes it feasible to allocate huge pages even in stressful condi-

tions (see Section 2.5).

• Through a detailed evaluation, we show that Illuminator significantly outperforms Linux

in terms of various performance metrics such as the execution speedup, latency, operating

system jitter and performance isolation (see Section 2.6).

2.2 Background on Physical Memory Management

In this section, we discuss some background on physical memory management. While the

details discussed in this section are specific to Linux, most concepts are similar across all major

operating systems.

2.2.1 Unmovable pages

The mobility (or movability) of a memory page depends on whether all references of the page

are tracked or not. In virtual memory systems, the operating system kernel manages user

virtual address space with several data stuctures such as page tables and a few other objects

(e.g., vm mm, vm area struct etc. [64]). Therefore, user memory pages can be migrated by

copying their content and updating the corresponding references. Note that this also includes

non-pageable mlocked memory regions that cannot be swapped out to disk.

11

brk/mmap

Figure 2.2: Physical memory allocation in Linux. The slab allocator allocates kernel objects
while the buddy allocator serves pages to the slab allocator (from the unmovable pool) and to
the user space (from the movable pool).

In contrast, there is a one-to-one mapping between (most) kernel virtual addresses and

physical memory addresses as shown in Figure 2.1. In other words, physical memory is directly

mapped into kernel virtual address space. There are multiple benefits of the direct mapping

approach: (1) it allows the kernel to translate a virtual address into physical address using

simple BASE+OFFSET arithmetic. This simplifies many kernel operations. For example, the

kernel needs to populate page table with the physical memory address when a memory page is

allocated to an application. Thanks to direct mapping and simple arithmetic, such operations

can be performed faster as compared to using alternate lookup based methods. (2) direct

mapping allows the kernel to use the largest page size in its TLB. For example, Linux uses

1GB pages on x86 systems to map its own virtual address space into physical memory. This

accelerates address translation when applications execute in the kernel context, and (3) direct

mapping simplifies kernel design as developers need not worry about tracking object references.

These benefits of direct mapping are well documented in the literature [55, 71].

However, direct mapping has an undesirable side-effect – i.e., direct mapped pages cannot

be migrated or swapped to disk because their references are not known. In simple words, direct

mapping makes kernel pages unmovable. We find that the unmovability of kernel pages is

primary hindrance to effective utilization of huge pages. In fact, as we show in this chapter,

unmovable pages can lead to serious performance degradation, if not handled well.

12

2.2.2 Memory allocation

Figure 2.2 shows the basic memory allocation framework of Linux. Most kernel objects are

allocated using the kmalloc API. These requests are in turn serviced by the slab allocator.

Since most kernel objects are smaller than a regular 4KB page, the slab allocator tries to pack

multiple kernel objects in a single physical page, reducing the overall memory consumption of

the kernel. To handle allocation requests from different kernel subsystems (e.g., file systems,

networking drivers), the slab allocator maintains separate caches – known as slab caches – for

different types of object. The slab allocator populates slab caches by requesting physical page

frames from the buddy allocator via alloc pages API. Note that page frames occupied by the

slab caches are unmovable.

User application requests are serviced at the granularity of pages (e.g., 4KB, 2MB etc.).

Therefore, these requests are directly handled by the buddy allocator. If huge pages are en-

abled, then the kernel preferentially allocates huge pages at the time of page fault, using direct

compaction when physical memory is fragmented. If a huge page allocation fails, the kernel

tries to allocate a baseline page to allow the application to continue execution. Baseline pages

can be promoted to huge pages in the background by the kernel thread called khugepaged. For

simplicity, we use the term page(s) and baseline page(s) interchangeably.

Current operating systems, including Linux, use a power-of-two buddy allocator that man-

ages free memory in several lists. Lists are ordered based on index wherein each index i contains

blocks of 2i free contiguous 4KB page frames. Linux uses 11 lists ordered from 0 to 10. Hence,

the smallest and largest unit of allocation is 4KB and 2MB, respectively.

2.2.3 RCU and deferred objects

Many kernel subsystems relying on the slab allocator employ Read-Copy-Update (RCU) syn-

chronization mechanism to achieve high scalability on multi-core systems. In RCU, writers do

not directly update the copy of the object under consideration. Rather, they create a new copy

and apply the update operation on the new copy. The old copy is deferred for freeing at a later

point in time when it is guaranteed that no thread will reference it. These deferred objects are

reclaimed by the synchronization mechanism after a grace period, which denotes the completion

of all its pre-existing readers. Note that delay in reclaiming deferred objects can increase the

kernel memory footprint because slab objects are unmovable by design.

2.2.4 Fragmentation mitigation techniques

Unfavorable placement of unmovable pages can create permanent fragmentation – a situation

from which recovering contiguous physical memory becomes difficult or impossible. This can

13

lead to huge page allocation failures. To prevent these situations, current systems employ a

combination of fragmentation avoidance and recovery strategies. In Linux, these strategies

are implemented using anti-fragmentation and memory compaction, respectively. We briefly

discuss these techniques below.

2.2.4.1 Anti-fragmentation

The purpose of anti-fragmentation is to avoid permanent fragmentation. Permanent fragmen-

tation can be avoided by clustering unmovable pages in a separate pool of memory. To achieve

such clustering, the buddy allocator divides physical memory in two disjoint pools (see Fig-

ure 2.2): unmovable (colored red) and movable (colored green). This partitioning is done at

pageblock granularity; a pageblock represents a huge page sized contiguous physical memory

pool (here, 2MB). The buddy allocator selects a pool based on the source of the allocation

request. For example, kernel requests are served from the unmovable pool and user pages are

allocated from the movable pool.

The size of movable and unmovable pools is not known to the kernel upfront – it depends

on the behavior of workloads that execute at runtime. Enterprise applications like file servers

and databases tend to exercise kernel subsystems heavily and therefore consume significant

kernel memory. On the other hand, high performance computing applications rarely use kernel

services and therefore consume very little kernel memory. Therefore, the size of the movable

and unmovable memory pools need to be flexible.

To accommodate the need of dynamic workloads, anti-fragmentation allows physical memory

pools to grow and shrink at runtime. Resizing is done using a stealing mechanism wherein one

pool can steal pageblocks from the other pool when it runs out of free memory (this event is

referred to as a fallback). During a fallback, the color of the stolen pageblock is determined

based on the movability status of majority of its children. For example, a pageblock is colored

green if majority of its baseline pages are movable. Similarly, a pageblock is colored red if

majority of its baseline pages are unmovable.

We note that the actual implementation of anti-fragmentation has more than two pools in

the Linux kernel [97, 96]. However, to simplify the discussion in this chapter, we describe it

only in the context of two i.e., movable and unmovable pools.

2.2.4.2 Defragmentation using memory compaction

The compaction algorithm recovers memory contiguity by migrating physical page frames in

memory. The implementation of compaction algorithm in Linux involves two pointers; from

one end, the migrate scanner prepares a list of in-use and movable baseline pages while the

freepage scanner collects free baseline pages from the other end [69]. Pages from the migrate

14

scanner’s list are copied to the freepage scanner’s list to recover memory contiguity.

Note that a huge page allocation can fail for two reasons: (1) the amount of total free

memory cab be low, and (2) there can be enough free memory but split into multiple small non-

contiguous blocks because of fragmentation. Compaction cannot recover memory contiguity in

the former case. Therefore, when the kernel fails to allocate a huge page, it first check the

Free Memory Fragmentation Index (FMFI) to determine if the allocation is failing due to lack

of free memory or due to fragmentation. For a binary buddy allocator [117, 118], FMFI for a

particular order of allocation j is calculated as follows (note that j=9 for 2MB huge pages):

Fi(j) = 1− TotalFree/2j

BlocksFree
(2.1)

where TotalFree is the number of free baseline pages and BlocksFree is the number of blocks

in the buddy allocator among which TotalFree pages are distributed.

If physical memory is not fragmented, then FMFI may be negative. However, FMFI need

not be calculated in those cases because allocations can be serviced easily in the absence of

fragmentation. If an order j allocation fails, then FMFI lies between 0 (low fragmentation) and

1 (high fragmentation). Therefore, the kernel compacts physical memory if FMFI is beyond a

non-negative threshold.

Physical memory can be compacted synchronously or asynchronously by the kernel. Here,

synchronous compaction refers to compaction performed in the context of handling a page fault.

Synchronous compaction, therefore, is useful as it can help in allocating huge pages eagerly.

However, it might affect application latency due to longer page fault handing time. Asyn-

chronous compaction happens out of the critical path of allocation e.g., when the khugepaged

kernel thread promotes application baseline pages to huge pages in the background.

2.3 A detailed analysis of fragmentation

The virtual memory layer in the Linux kernel has undergone significant changes for accommo-

dating the support for huge pages. However, operations at the physical memory layer (i.e.,

page/object allocation, compaction) have largely remained unchanged. This section discusses

how unnecessary work can occur and become a source of poor performance in long-running

systems. First, we introduce the notion of a hybrid pageblock.

2.3.1 Memory allocation

Hybrid pageblock: A pageblock is hybrid if it contains both movable and unmovable pages.

We explain how hybrid pageblocks are formed with an example (see Figure 2.3).

15

Figure 2.3: Two-way classification based anti-fragmentation leads to fragmentation via pollution
because the buddy allocator cannot reuse hybrid pageblocks during fallbacks. For example,
pollution of P1 can be avoided by reusing P2 during C→D. For clarity, hybrid pageblocks are
colored yellow in this figure, but the Linux kernel treats them as either red or green, depending
on which pool they belong to.

Let us assume a system starts with four pageblocks P1 to P4. The two-way classification

approach of anti-fragmentation works well until the system reaches state A where P1, P4 belong

to the unmovable pool and P2, P3 belong to the movable pool. If P1 and P4 have no free pages

left and an unmovable page is requested by the kernel, the algorithm of Linux steals and adds

P2 to the unmovable pool during system transition from A→B. P2 thus becomes a hybrid

pageblock during A→B, if some movable pages were already allocated from it.

2.3.2 The invisibility of hybrid pageblocks

Two-way classification based anti-fragmentation makes hybrid pageblocks invisible which in

turn represents a stale view of movability. While, in reality, there are three types of page-

blocks (i.e., movable, unmovable and hybrid) in the system, memory subsystems operate on

the assumption of only two types of pageblocks – treating each pageblock as either movable or

unmovable. This leads to the following scenarios of poor decision making in critical code paths.

2.3.2.1 Fragmentation via pollution

This is a situation where unmovable pages are unnecessarily allocated from movable (green)

pageblocks. This happens because even though hybrid pageblocks are placed at the head of free

lists during fallbacks, they get shifted away from the head over a period of memory allocation

and free cycles. Thus, the buddy allocator cannot identify or reuse existing hybrid pageblocks

efficiently. For example in Figure 2.3, P1 gets polluted during C→D because the buddy allocator

is not aware of P2 already being a hybrid pageblock. Similarly, the transition from E→F also

produces a new hybrid pageblock P4. In the worst case, each fallback can produce a fresh

hybrid pageblock in the system.

Fragmentation via pollution restricts huge page allocations since a polluted pageblock can-

not be allocated as a huge page unless its unmovable pages are freed. In practice, only a

16

few misplaced unmovable pages can create permanent fragmentation. For example, a 2MB

pageblock on x86 systems consists of 512 baseline pages (512×4KB=2MB). However, a single

unmovable page is sufficient to pollute a pageblock and hence only 0.19% misplaced unmov-

able pages (of total system pages) can pollute all the pageblocks (1/512=0.0019) in the worst

case. Moreover, the severity of fragmentation via pollution increases along with the size of huge

pages — a system using 1GB-sized huge pages can be fragmented by only 0.00038% misplaced

unmovable pages.

2.3.2.2 LIU migration

During compaction, the kernel migrates pages from all green pageblocks encountered by the

migrate scanner, optimistically believing that a green pageblock can always be emptied. But

many hybrid pageblocks are also colored green in the two-way classification of pageblocks (for

example, both P1 and P4 are hybrid in state F). This behavior leads to LIU migration.

LIU migration is harmful because it unnecessarily consumes CPU cycles. For example,

migrating a baseline page takes about 5 microseconds on our test setup. When a hybrid

pageblock contains one unmovable page, the kernel may migrate up to 511 pages from the

pageblock adding 2.5 millisecond latency to a huge page allocation. This latency is further

exacerbated when many consecutive pageblocks are hybrid. Even worse, huge page allocation

can fail even after migrating pages from many hybrid pageblocks.

In addition to copying the page content, compaction also involves other critical operations

such as updating the page table(s) and locking a few critical data structures. It also necessi-

tates TLB invalidations because the page being migrated may be mapped in the TLB of some

CPU core(s). TLB invalidations are performance using operating system driven inter-processor

interrupts (IPIs). The overhead of TLB invalidations is a major performance impediment on

large multi-core machines [120, 180]. Therefore, when many pageblocks become hybrid in a

system, LIU migration becomes an unnecessary overhead because the kernel migrates pages in

response to each huge page allocation request without checking the futility of doing so.

The current kernel design assumes that LIU migration is not an issue as it can prevent

long-term fragmentation for sub-pageblock sized allocations. For example, a 64KB allocation

request can be served by migrating pages from a hybrid pageblock. It can also free other smaller

blocks that can be used to serve future allocations. While we believe such proactive migration is

desirable for reducing fragmentation for sub-pageblock allocations, it should not be applicable

to huge page allocations because it never produces a free pageblock and hence never reduces

long-term fragmentation at the granularity of huge pages.

17

Number of unmovable pages
Number of hybrid pageblocks
Linux (664) Illuminator (34)

1 24 0

2–50 600 0

50–250 30 0

250–375 10 2

375–512 0 32

Table 2.1: Distribution of unmovable pages. Illuminator produces only about 5% hybrid page-
blocks compared to Linux.

2.3.2.3 Experimental analysis of fragmentation

We find that fragmentation via pollution and LIU migration are quite common in Linux. For

instance, on a 2GB system which has about 950 pageblocks, the compilation of the kernel

source produces 664 hybrid pageblocks with most of the hybrid pageblocks containing a few

unmovable pages (see Table 2.1). In fact, 624 out of 664 hybrid pageblocks have less than 50

unmovable pages each. Interestingly, 24 hybrid pageblocks contain one unmovable page each.

As discussed above, sparsely polluted pageblocks lead to significant overhead during memory

compaction.

2.3.3 Delayed reclamation of deferred objects

In the existing slab-based allocators, deferred objects are not reclaimed immediately after the

completion of a grace period for several reasons. For example: 1) RCU manages deferred

objects in a queue and reclaims their memory by invoking the registered callback function of

each object. Thus the reclamation of objects placed towards the end of the queue is delayed, 2)

RCU throttles the rate of reclamation of deferred objects to avoid interfering with applications,

irrespective of the state of the slab allocator [134], and 3) the kernel threads responsible for

reclaiming deferred objects may be preempted. Until reclaimed, deferred objects cannot be

reused as they remain invisible to the slab allocator.

Modern applications that perform thousands of update operations per second generate many

deferred objects [161]. The delayed reclamation of deferred objects in turn increases slab con-

sumption. It also leads to high slab churns by forcing the slab allocator to populate slab

caches, in response to a new allocation request, even if a lot of deferred objects have waited for

more than a grace period. Recall that slab pages are unmovable. Hence, unnecessary calls to

alloc pages can increase fragmentation via pollution.

Figure 2.4 shows the impact of fragmentation via pollution with a synthetic benchmark

18

0

300

600

900

1200
N

u
m

b
e

r
o

f
h

yb
ri

d
 p

ag
eb

lo
ck

s

Iterations

Linux Prudence Illuminator

20 40 60 80 100

Figure 2.4: Rate of pageblock pollution with a synthetic benchmark that repeatedly stress the
buddy and the slab allocator simultaneously.

that we use to fragment the memory. Unlike existing tools, our benchmark stresses the buddy

allocator (with anonymous mapping) and the slab allocator (with file create and delete opera-

tions) at the same time and can be used to control the level of fragmentation. We execute the

benchmark in a loop and observe the following.

In Linux, the delayed reclamation of deferred objects increases the number of calls to

alloc pages resulting in 1021 hybrid pageblocks at the end of the hundredth iteration. The

recently proposed Prudence dynamic memory allocator [153] reclaims deferred objects immedi-

ately after the completion of a grace period which reduces the number of hybrid pageblocks to

691, a 35% reduction compared to Linux. Hence, we replace the slab allocator with Prudence.

2.3.4 Large memory large problems

We also find a counterintuitive side effect of LIU migration i.e., it can make performance worse

as the size of memory grows. We observed that when a fixed fraction of total pageblocks become

hybrid, the execution time of certain applications increases with the size of physical memory.

To verify this, we measure the performance of milc (from SPEC CPU2006) with different

memory sizes when 75% of total pageblocks are hybrid. This workload is chosen because it

stresses the memory allocation and compaction code paths due to aggressive memory allocation

behavior. Note that a large memory system has more hybrid pageblocks and takes more time

to reach a state where 75% of total pageblocks are hybrid. However, in this experiment, we do

not consider the time taken to fragment the memory; we are interested only in the impact of

fragmentation. The amount of LIU migration is also higher on a large memory system as it

19

0

300

600

900

1200

2 4 6 8 10 12

Ex
ec

u
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

Memory size (GB)

none async sync+async

Figure 2.5: Execution time of milc with no compaction (none), with asynchronous compaction
(async) and with synchronous and asynchronous compaction (sync+async) at 0.75 unmovability
index.

contains more hybrid pageblocks. For example, 2GB and 10GB memory systems have about

750 and 3750 hybrid pageblocks in this case (75% of 1k and 5k pageblocks, respectively).

Figure 2.5 shows that milc completes in constant time for all memory sizes when com-

paction is not required i.e., in the non-fragmented case. The execution time is also constant in

the fragmented case (but higher than the non-fragmented case) with only asynchronous com-

paction which is designed to avoid interfering with applications. To the contrary, synchronous

compaction stalls applications at the time of page fault. Hence, its impact increases as mem-

ory capacity (and hence the number of hybrid pageblocks) grows. As a result, 12GB memory

system results in 1.9× higher execution time compared to a 2GB memory system.

This occurs because the kernel controls the rate of only asynchronous compaction, with a

configuration parameter whose default value is 1.6MB per second. No such limit is enforced on

the rate of synchronous compaction whose cost increases as the number of hybrid pageblocks

grow. Hence, applications that allocate memory during their entire execution cycle (e.g., milc,

bwaves, bzip2 from SPEC CPU2006) are heavily impacted by synchronous compaction. Ap-

plications that do not allocate memory frequently are not vulnerable to such behavior. We

believe a similar issue may be present in Windows as it prohibits making repeated large page

allocations; applications should allocate all large pages one time, at startup [81].

One way to handle this issue is to employ policy-based decisions to also control the rate

of synchronous compaction. However, our objective in this chapter is to develop an efficient

compaction mechanism that can help in both synchronous and asynchronous code paths.

20

2.3.5 Impact of fragmentation in virtualized systems

Notice that in virtualized systems, the guest OS (if it is Linux) handles fragmentation with

similar algorithms as the host OS. Hence, the severity of fragmentation is higher in virtualized

setups because LIU migration takes place in both guest and host when memory is fragmented.

We find that the impact of guest memory fragmentation is more severe than host memory

fragmentation as the benefits of huge pages at the guest layer are usually higher than huge

pages at the host (for our workloads). However, fragmentation in the host layer also has a

significant impact in many cases. Hence, it is important to handle fragmentation in both layers

for making the best use of huge pages.

2.4 Understanding and addressing the root cause

In Section 2.3, we discussed how fragmentation via pollution occurs due to unmovable pages,

and how it affects system performance because of LIU migration. In this section, we explain

why these problems appear in the first place.

The root cause of fragmentation via pollution and LIU migration is the lack of adequate

representation of the state of physical memory fragmentation. In particular, the buddy allocator

and compaction algorithm are both unaware of hybrid pageblocks.

Let us consider page frame allocation and anti-fragmentation first. The primary objective

of anti-fragmentation is to cluster unmovable pages effectively i.e., in as few pageblocks as

possible. However, when memory pressure increases in the system, movable and unmovable

memory pools frequently steal page frames from each other. This dynamic growth of memory

pools inevitably creates many hybrid pageblocks. However, current buddy allocator treats each

pageblock as either movable or unmovable while in many cases, majority of the pageblocks are

hybrid. Hence, the buddy allocator fails to capture the real movability status of most of the

physical memory. In Section 2.5, we show that capturing hybrid pageblocks is invaluable from

the clustering perspective.

The problem with compaction is that it relies on FMFI to determine whether physical

memory can be defragmented using compaction. However, FMFI does not say anything about

unmovable pages. We find that situations are quite common where FMFI is high (indicating

that compaction is likely to produce memory contiguity), whereas most of the pageblocks are

hybrid – meaning that compaction is unlikely to be successful. Therefore, FMFI fails to capture

the difficulty or likelihood of successfully recovering from a fragmented state. Relying on FMFI

alone also leads to unnecessary page migration for the same reason.

21

0

0.2

0.4

0.6

0.8

1

U
n

m
o

va
b

ili
ty

 in
d

ex

Iteration

Linux Illuminator Perfect-clustering

20 40 60 80 100

Figure 2.6: Linux creates avoidable fragmentation since its unmovability index is much higher
than a perfect page-clustering algorithm. Illuminator is very close to an ideal system.

2.4.1 Augmenting fragmentation with unmovability

Both the issues discussed above can be handled effectively with an enhanced representation of

physical memory fragmentation. To do this, we propose a simple metric unmovable index (UI),

defined as follows:

UI(j) =
Number of 2j size blocks with one or more unmovable page

Total number of 2j size blocks
(2.2)

UI is defined for each order of allocation. While the definition of UI is generic, in this

chapter, we are interested in 2MB huge pages that correspond to j=9. Therefore, UI captures

the fraction of pageblocks that are fragmented due to unmovable pages. For example, UI is 0.5

if half of the total pageblocks contain at least one unmovable page each.

Note that the overall state of fragmentation depends on how unmovable pages are spread

in physical memory. Sparsely polluted pageblocks result in higher fragmentation because for a

fixed amount of unmovable memory, sparse pollution creates more hybrid pageblocks. This is

easily captured by UI as many sparsely polluted pageblocks imply a higher value of UI. Also

note that UI is not a substitute for FMFI – rather it complements FMFI. In fact, the two-

dimensional tuple (FMFI, UI) represents a more accurate state of fragmentation wherein the

first element determines how free memory is split across multiple blocks and the second element

captures how likely is it for compaction to recover memory contiguity.

22

brk

mmap

Figure 2.7: Illuminator explicitly manages hybrid pageblocks in a different pool to prevent frag-
mentation via pollution. Prudence helps Illuminator by minimizing callbacks to alloc pages

with timely reclamation of deferred objects.

2.4.2 Making operating system responsibilities explicit

The other advantage of capturing fragmentation as a two-dimensional tuple (FMFI, UI) is that

it provides a well-defined metric to the memory management subsystems. It influences the

behavior of the buddy allocator and compaction algorithm as follows:

1. The buddy allocator should minimize UI.

2. Compaction should be based on UI and FMFI both.

UI can also be used to capture the behavior of an oracle – a perfect page-clustering algorithm

that would produce the minimum possible value for UI by packing all unmovable pages together.

Minimum possible UI attainable via an oracle can be defined as follows:

Minimum possible UI =
Total number of unmovable pages

Total number of pages in the system
(2.3)

Figure 2.6 shows the same experiment as discussed in Figure 2.4, but in terms of UI. It shows

that fragmentation created by Linux is avoidable as the minimum possible value attainable via

an oracle is less than 0.1 whereas UI is more than 0.8 in Linux. In Section 2.5, we present the

design and implementation of our proposed system Illuminator that uses UI as an important

metric to optimize system performance. Figure 2.6 shows that Illuminator is very close to an

oracle as its UI is very close to a perfect-clustering algorithm.

2.5 Illuminator: Design and Implementation

To efficiently support huge pages, an OS should mitigate fragmentation via pollution and elim-

inate LIU migration. Intuitively, any solution that minimizes slab memory consumption is also

23

Figure 2.8: Explicit management of hybrid pageblocks improves page clustering. Once P2 is
yielded to the hybrid pool during A→B, it is reused until state K. P1 is added to the hybrid
pool only when P2 fails to allocate memory.

helpful. Illuminator satisfies these requirements by explicitly managing hybrid pageblocks with

a simple design. To optimize the memory consumption of slab caches, we use the Prudence

memory allocator [153]. Figure 2.7 represents the high-level design of Illuminator.

2.5.1 Explicit management of hybrid pageblocks

Illuminator partitions memory in three disjoint pools where unmovable and movable pools

serve the same purpose as in Linux while the third pool is used to explicitly manage hybrid

pageblocks. We represent hybrid pageblocks with yellow color. Three-way partitioning based

anti-fragmentation provides memory management subsystems a precise view of movability; it

guarantees that pageblocks colored red contain only unmovable pages and pageblocks colored

green contain only movable pages. This design helps subsystems in making informed decisions.

2.5.1.1 Minimizing UI by mitigating fragmentation via pollution

In Illuminator, the buddy allocator attempts to allocate memory from the corresponding pool

first (similar to Linux) but prefers hybrid pageblocks for allocation before a pool is allowed to

steal pageblock(s) from the other. If a fallback happens, a pageblock is stolen only if all of its

constituent base pages are free. Otherwise, the pageblock is yielded to the hybrid pool and

its color is updated to yellow. This way, Illuminator ensures that pageblocks are not polluted

unnecessarily. The inclusion of hybrid pageblocks does not add performance overhead in the

allocation path as they can be accessed by the buddy allocator in constant time.

We explain the memory allocation flow in Illuminator with an example similar to the one

discussed in Section 2.3 (see Figure 2.8). Illuminator behaves similar to Linux until the system

reaches state A as the hybrid pool stays empty until this point. If an unmovable page is

requested when P1 and P4 have no free pages, the movable pool yields P2 to the hybrid pool

and tags it with yellow color. Illuminator guarantees that a new pageblock is not polluted as

24

long as P2 can successfully serve memory fallbacks. This behavior leads to better clustering of

unmovable pages in the long run.

The impact of better page-clustering is shown in Table 2.1. Illuminator reduces the number

of hybrid pageblocks to only 34 compared to 664 of Linux, each with many unmovable pages.

Note that almost each hybrid pageblock has more than 375 unmovable pages in Illuminator. It

reduces the number of hybrid pageblocks by almost 90% for our synthetic benchmark as well

(shown in Figure 2.4).

2.5.1.2 Eliminating LIU migration

Illuminator eliminates LIU migration related to huge pages by decoupling huge page related

compaction from the compaction induced by smaller (i.e., sub-pageblock) allocation requests.

This is achieved by avoiding hybrid pageblocks during huge page allocations. The migrate

scanner checks the color of each pageblock before migrating pages and skips the entire pageblock

range (i.e., 512 contiguous baseline pages) if the pageblock is hybrid. Similarly, the freepage

scanner also skips hybrid pageblocks while collecting free pages.

We deliberately allow the freepage scanner to skip hybrid pageblocks so that free space in

the hybrid pool is not exhausted prematurely. If the freepage scanner is allowed to select pages

from hybrid pageblocks, then page migration during compaction will quickly exhaust free space

in the hybrid pageblocks. This increases the risk of subsequent memory allocations falling back

to movable or unmovable pools – which in turn would increase UI. Therefore, skipping hybrid

pageblocks is essential to minimize UI and fragmentation via pollution.

2.5.2 Reclaiming pageblocks from the hybrid pool

A hybrid pageblock may become movable, for example, when memory gets freed and the slab

allocator returns all its pages to the buddy allocator. It is important to reclaim such pageblocks

from the hybrid pool to prevent them from getting polluted by future allocations. Illuminator

follows a lazy approach for this task for efficiency; proactively reclaiming pageblocks from the

hybrid pool necessitates changes in the fast path of the buddy allocator as it requires keeping

track of the number of unmovable pages in each pageblock. In performance sensitive code paths,

such accounting is considered to be expensive.

Illuminator reclaims pageblocks from the hybrid pool during compaction. It queries the

number of movable and unmovable pages for each hybrid pageblock encountered by either of

the two pointers. If a hybrid pageblock is found to contain only movable (or free) pages,

Illuminator updates the pageblock color to green and adds it to the movable pool. Similarly,

a pageblock is colored red and added to the unmovable pool if it is found to contain only

25

Figure 2.9: The location of unmovable pages affects the outcome of compaction in the two-way
classification approach. In this case, Linux can allocate a huge page only in scenario A while
Illuminator can allocate huge page in both A and B.

unmovable (or free) pages. If compaction is delayed for a long duration, a thread can be run

in the background to periodically scan and reclaim pageblocks from the hybrid pool.

2.5.3 Eliminating susceptibility to page locations

In the Linux kernel, the invisibility of hybrid pageblocks also has an additional side effect i.e., it

makes performance susceptible to physical location of unmovable pages. We explain this with

an example.

Consider two different scenarios of a system with three pageblocks P1, P2 and P3 along with

the positions of the scanning pointers as shown in Figure 2.9. Assume that half of the baseline

pages (i.e., 256 pages) are allocated from each pageblock. Also assume that P2 is hybrid in

scenario A and P1 is hybrid in scenario B, with one unmovable page each. In Linux, a huge

page can be allocated only in scenario A (by migrating P1’s pages to P3). In scenario B, LIU

migration of P1’s pages to P3 would eliminate the possibility of P2 being allocated as a huge

page as it will leave P3 with insufficient space to accommodate the pages of P2.

As a consequence of such behavior, the cost of compaction in Linux depends on the spatial

distribution of unmovable pages which in turn leads to variable latency in the allocation of huge

pages. Illuminator is not susceptible to such behavior as it avoids hybrid pageblocks during

compaction.

2.5.4 Timely reclamation of deferred objects

We use Prudence memory allocator to facilitate the timely reclamation of deferred objects.

Prudence stores deferred objects in latent caches where a latent cache is defined for each slab

cache. It also integrates with RCU synchronization mechanism to provide grace period informa-

tion to the slab allocator. With such information, the slab allocator reclaims deferred objects

immediately after the completion of a grace period.

Integration with the synchronization mechanism provides a complete view of in-use, free

26

and about-to-be-freed objects to the slab allocator. The about-to-be-freed objects also pro-

vide crucial hints about the future free operations which are utilized to reduce the footprint of

unmovable memory by clustering kernel object allocations within fewer slabs. Together, these

optimizations substantially reduce the number of calls to alloc pages API from the slab allo-

cation. For our synthetic benchmark, Prudence creates 691 hybrid pageblocks, a reduction of

33% compared to 1021 of Linux as shown in Figure 2.4.

It is important to highlight that only optimizing the slab allocator is not sufficient because

fragmentation via pollution, which is under the control of the buddy allocator, is the primary

hindrance to effective mitigation of fragmentation. However, optimizations in the slab allocator

complement the explicit management of hybrid pageblocks by reducing the load on the buddy

allocator.

2.5.5 Implementation notes

Illuminator is a simple enhancement of allocation and compaction related memory manage-

ment operations in Linux. It modifies only the infrequently traversed memory fallback path of

the buddy allocator with minor changes in the memory compaction code. Prudence memory

allocator also affects only the deferred free operations of RCU objects which are executed out

of the critical path. Hence, regular fast-path allocation and free operations remain intact in

Illuminator. In fact, by eliminating LIU migration, Illuminator makes certain memory man-

agement operations simpler and more efficient. For example, it reduces locking overhead on

several critical data structures, minimizes cache pollution and requires fewer TLB invalidations.

Illuminator is about 1500 lines of code change in the Linux kernel version 4.5 – a change of less

than 1.5% of its total memory management code.

Workloads Description
milc, mcf, omnetpp,
bzip2

Memory and compute intensive applications
from SPEC CPU2006 [105]

mummer, tigr
Genome alignment and sequencing applications
from BioBench benchmark suite [43]

CG
Congruent gradient algorithm from NAS Parallel
Benchmark Suite (class D) [49]

ferret, vips, canneal,
bodytrack, x 264

Compute intensive multi-threaded workloads from
PARSEC benchmark suite [62]

PostgreSQL, MySQL
Database servers benchmarked with pgbench [11]
and sysbench [14] utilities

Table 2.2: Summary of workloads evaluated.

27

Terminology Description
pg migrate scanned Number of pages scanned by the migrate scanner
pg free scanned Number of pages scanned by the freepage scanner
pg migrate success Number of pages migrated during compaction
pg migrate failed Number of pages that failed during migration

pg isolated
Number of pages that were temporarily
removed from the buddy allocator

Table 2.3: Software counters used to measure the cost of memory compaction.

2.6 Evaluation

So far we have discussed how Illuminator mitigates fragmentation via pollution with the help

of a few examples such as Table 2.1 and Figure 2.4. This section presents a detailed evaluation

of Illuminator in the context of huge pages.

2.6.1 Experimental setup and workloads

Our experimental setup consists of an Intel Ivy-Bridge server with 8 cores running at 2.4GHz

with 8MB of Last-Level-Cache and a 500GB SSD drive. L1 dTLB and iTLB contain 64 entries

each for 4KB pages and 8 entries each for huge pages. The shared L2 TLB contains 512

entries for 4KB pages but does not support huge pages. We evaluate a wide range of workloads

summarized in Table 2.2. Experiments are conducted after disabling swap, to avoid the impact

of paging. Experiments that include large memory workloads CG, PostgreSQL and MySQL are

conducted with 24GB while other experiments are performed with 8GB physical memory. We

use the default huge page promotion rate of 1.6MB per second for the khugepaged thread as

used in Linux distributions.

2.6.2 The cost model for memory compaction

We use the cost-theoretic model proposed by Gorman to estimate the total cost of memory

operations involved in compaction [95]. The model estimates the cost of memory compaction

Costmc in terms of the number of bytes read or written, by tracking system activities and

associating each activity with a weight factor (see Table 2.3 and Table 2.4). Costmc is calculated

as follows:

Costmc = Csm ∗ pg migrate scanned+ Csf ∗ pg free scanned+ Ci ∗ pg isolated

+ Cmc ∗ pg migrate success+ Cmf ∗ pg migrate failed
(2.4)

Costmc determines the amount of memory traffic induced by the compaction code which

28

Notation Description Value

Ca
Accessing page structure:
sizeof(struct page)/word size

8

Cmc
Migrate page copy:
(Ca + PAGE SIZE/word size)× 2

1040

Csm
Migrate scanning: Ca, this is
equivalent to scanning a page structure

8

Csf
Freepage scanning: Ca, this is
equivalent to scanning a page structure

8

Ci
Page isolation: Ca +Wi where Wi is
a constant representing locking overhead

28

Cmf Migrate page failure: Ca × 2 16

Table 2.4: Cost of each activity in the Linux kernel. We take Wi to be 20. However, the cost
of compaction is not heavily dependent on its exact value.

At rest Under stress
Linux Illuminator Linux Illuminator

Min 67% 68% 3% 12%

Max 72% 72% 7% 28%

Avg 69% 69% 5% 17%

Table 2.5: Huge page allocation success rate for stress-highalloc which tries to allocate 90%
of memory as huge pages.

directly impacts the cache efficiency. Page migration also requires TLB shootdowns as the

kernel is generally unaware of whether a page is cached in a TLB (on x86). The cost of TLB

shootdowns does not scale well and is known to be a major source of performance overhead in

multi-core systems [47, 120]. Hence, minimizing Costmc is essential for multiple reasons.

2.6.3 Huge page allocations with stress-highalloc

stress-highalloc [13] is a standard benchmark used by the Linux kernel community de-

velopers to quantitatively measure the impact of fragmentation mitigation techniques. The

benchmark stresses the memory allocators by running multiple kernel compilation jobs in par-

allel before requesting 90% of total system memory as huge pages. We run stress-highalloc

with 3GB memory which is also the recommended size for this benchmark.

Table 2.5 shows the success rate of huge page allocations as the average of five runs of

stress-highalloc. Illuminator behaves similar to Linux when the system is at rest (not

fragmented) but outperforms Linux under stress (when memory is heavily fragmented with

unmovable pages) due to its better management of unmovable pages. Compared to Linux,

Illuminator allocates 3.4× more huge pages and reduces Costmc by more than 80%.

29

-60

-45

-30

-15

0

15

30

45

%
 p

er
fo

rm
an

ce
 g

ai
n

Unfragmented Linux-M Linux-H Linux-C Illuminator

milc mcf omnetpp bzip2 mummer tigr CG canneal

Figure 2.10: Performance relative to baseline pages at 0.25 (Linux-M), 0.5 (Linux-H) and
0.75 (Linux-C) unmovability indices. Illuminator’s performance is presented once which is
valid for all fragmentation indices considered. Notice that the performance in Linux degrades
as fragmentation increases resulting in worse than the performance of baseline pages at 0.75
unmovability index for most applications.

2.6.4 Performance results on bare-metal

The main objective of Illuminator is to mitigate fragmentation in long-running systems. There-

fore, assessing the performance benefits of Illuminator requires physical memory to get frag-

mented. To the best of our knowledge, stress-highalloc is the only reliable benchmark

available for fragmenting memory with unmovable pages. However, this benchmark is reliable

for only up to 3GB physical memory which does not provide a realistic context on modern

large memory systems. Hence, we use our synthetic benchmark tool as discussed in Section 2.3

to reliably fragment the physical memory prior to executing our workloads. The benchmark

tool repeatedly allocates movable and unmovable page frames leading to many memory fall-

backs across movable and unmovable pools of memory. Our tool can be configured to fragment

physical memory up to a pre-determined threshold in Linux, defined in terms of UI.

To understand the effect of fragmentation in various stages, we measure performance in

three different states of fragmentation i.e., moderate, high and critical, corresponding to the

unmovability index (UI) of 0.25, 0.5 and 0.75, respectively. We refer to Linux at moderate,

high and critical fragmentation levels as Linux-M, Linux-H and Linux-C.

We find that Illuminator’s performance is consistent despite varying fragmentation because

it limits the number of hybrid pageblocks to less than 10% of Linux. Hence, less than 8%

30

of total pageblocks are hybrid in Illuminator even when Linux has 75% hybrid pageblocks.

Hence, we present Illuminator results only once as it is valid across all three fragmentation

levels considered. To compare the performance of Linux and Illuminator against the best

possible performance attainable with huge pages, we also evaluate workloads in the absence of

fragmentation. For this, we record each application’s performance on a freshly booted system.

This ensures that no huge page allocation request fails for the entire duration of each workload.

2.6.4.1 Overall performance improvement

Figure 2.10 shows performance relative to baseline pages. In Linux, application performance

degrades as fragmentation increases. Notice that most applications perform even worse than

baseline pages in Linux-H and Linux-C. The worst case is seen for milc which suffers 38% and

41% performance loss in Linux-H and Linux-C. Even in cases where Linux improves perfor-

mance, the benefits are significantly lesser than the unfragmented case. For example, Linux-H

improves the performance of mcf by 22% as compared to 39% of the unfragmented case.

Illuminator outperforms Linux and achieves performance comparable to the unfragmented

system for 5 out of 8 applications while others are within 2–12% of the unfragmented system.

Some performance loss compared to the best case is expected for multiple reasons: (1) Illumina-

tor eliminates only LIU migration; the overhead of normal migration also affects performance,

and (2) under heavy fragmentation, many huge page allocation requests fail, leading to base-

line 4KB page allocations for the corresponding application virtual memory regions. Though

such memory regions are promoted to huge pages by the kernel in the background, this oper-

ation takes time. Therefore, until promotion, applications continue to execute with baseline

pages, incurring TLB miss overheads as compared to the unfragmented case where all huge

page allocations succeed at the time of page fault.

Application Linux-M Linux-H Linux-C Illuminator
milc 17621/34 4657/209 65/0 17594/45
mcf 121/6 81/4 17/0 135/15
omnetpp 20/90 15/20 17/17 22/101
bzip2 684/12 190/9 110/0 620/55
mummer 112/0 57/0 11/0 483/9
tigr 88/106 74/72 11/9 228/556
CG 1349/151 890/134 793/52 3405/736
canneal 92/15 68/11 31/0 92/379

Table 2.6: Number of huge pages allocated/promoted. Allocation happens in the page fault
handler while promotion is done by the khugepaged kernel thread in background.

31

0

20

40

60

80

100

milc mcf omnetpp bzip2 mummer tigr CG canneal

co
st

 r
ed

u
ct

io
n

 (
%

)

Moderate High Critical

Figure 2.11: Reduction in the cost of compaction with Illuminator at different fragmentation
levels.

Despite these factors, Illuminator provides significantly better performance than Linux in

all fragmented situations. For example, it improves the performance of milc by 55%, mcf by

21%, omnetpp by 18%, mummer by 19%, tigr by 32%, CG by 38% and canneal by 8% compared

to Linux-C. The average performance improvement is also significant i.e., 5.5%, 19.5% and 25%

compared to Linux-M (UI=0.25), Linux-H (UI=0.5) and Linux-C (UI=0.75).

Next we discuss how Illuminator’s better performance is correlated to the number of huge

page allocations and the cost of compaction incurred in allocating huge pages.

Huge page allocations: Table 2.6 shows that Linux’s ability to allocate huge pages is im-

pacted by the unmovability index (UI). For example, Linux-M allocates about 17K huge pages

to milc which drops to 4.6K in Linux-H and further to only 65 in Linux-C. Illuminator allocates

about 17.5K huge pages to milc.

Similarly, khugepaged’s ability to promote huge pages in the background also gets impacted

by fragmentation in Linux. Notice that Linux-C is unable to promote any huge page for 5 out

of 8 workloads. The best case for huge page promotions is observed with tigr and CG where

Illuminator promotes 556 and 736 huge pages compared to 9 and 52 in Linux-C.

Compaction overhead: Illuminator significantly reduces the cost of compaction by eliminat-

ing LIU migration (Figure 2.11); the reduction is 10–83% compared to Linux-M (UI=0.25),

19–99% compared to Linux-H (UI=0.5)%, and 62–99% compared to Linux-C (UI=0.75).

Efficient compaction in turn reduces CPU utilization and lowers the amount of time an

32

Time spent in kernel mode
execution (seconds)

% of total execution time
spent in kernel mode

Linux-M 11 2%
Linux-H 255 28%
Linux-C 343 37%
Illuminator 11 2%

Table 2.7: Kernel mode execution time (in seconds) and the percentage of total time spent in
the kernel mode for milc.

application spends in the kernel mode of execution (i.e., system time). While we observed

a significant reduction in the system time of all applications, we report it only for milc (see

Table 2.7) as the system time was a small fraction (less than 5%) of the overall execution time

for other applications. For milc, system time is higher because this application stresses the

compaction code path due to its repeated memory allocation and freeing patterns. In Linux-

M (UI=0.25), milc spends only about 2% of its overall execution time in kernel mode which

increases to 28% in Linux-H (UI=0.5) and further to 37% in Linux-C (UI=0.75). Illuminator

keeps the system time of milc within 2% of the overall execution time.

2.6.4.2 Latency and OS jitter

We evaluate the impact of LIU migration on latency with the MySQL database server configured

with a table of 32 million rows on which a read-only workload was executed with 8 threads. We

repeat the experiment 10 times with 30 minutes per iteration and report the maximum latency

observed in each iteration (see Figure 2.12).

In Linux, huge page allocation latency is affected by the location of unmovable pages as the

time taken to allocate a huge page depends on the number of hybrid pageblocks encountered

by the migrate scanner. Such behavior leads to high latency spikes in Linux. For example

in Linux-H, the maximum latency of MySQL read requests varies from 57ms–4702ms across

ten iterations. In Illuminator, the maximum latency across iterations varies from 16ms–156ms,

which is much lower than Linux due to the elimination of LIU migration. Notice that eliminating

LIU migration alone does not provide any throughput improvement. When fragmentation via

pollution is handled along with LIU migration, we observed 14% higher throughput for MySQL

due to a higher number of huge page allocations.

2.6.4.3 Performance isolation

As discussed earlier, applications like milc monopolize memory compaction by generating fre-

quent page faults. Note that compaction is a global process that migrates all movable pages

33

0.155 0.016
0.147

0.156 0.156
0.146

0.078 0.147 0.147 0.144

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

La
te

n
cy

 (
se

co
n

d
s)

Iteration

Linux Illuminator

Figure 2.12: Maximum latency for MySQL read requests from 10 iterations at high fragmentation
level (UI=0.5).

0

5

10

15

20

25

30

ferret bodytrack vips x264 PostgreSQL MySQL

%
 s

lo
w

d
o

w
n

Linux Illuminator

Figure 2.13: Slowdown for applications (lower is better) while running alongside milc at high
fragmentation.

encountered by the migrate scanner until it either fails, allocates/promotes sufficient huge pages

or gets preempted by the scheduler. In a fragmented system, LIU migration can lead Linux

into a compaction loop which in turn negatively impacts other workloads running on the same

machine.

34

0

30

60

90

120

150

mummer tigr canneal mcf milc

%
 p

er
fo

rm
an

ce
 g

ai
n

Illuminator-Host Illuminator-Guest Illuminator-Both

Figure 2.14: Performance improvement over Linux-H (UI=0.5) in a virtualized system when
Illuminator is deployed at host, guest and both.

We measure performance isolation by executing a few workloads (one-by-one) alongside

milc and record the slowdown observed by them in Linux-H and Illuminator. Figure 2.13

shows the slowdown experienced by the workloads when fragmentation is high. Illuminator

provides better performance isolation in all cases. For example, vips slows down by 10% in

Linux-H but experiences negligible performance loss with Illuminator. Performance isolation is

considerably better for all other applications as well in Illuminator. We noticed that by avoiding

LIU migration, Illuminator reduces the number of TLB shootdowns by 63% (for ferret) to

90% (for vips).

2.6.5 Performance in virtualized environments

We evaluate a virtualized setup with Ubuntu16.04 running at the host with 24GB memory

and kernel virtual machine or KVM as the hypervisor. The guest operating system runs with

Ubuntu12.04, 8 cores and 8GB memory. In a virtualized system, application performance

depends on the state of memory fragmentation at both the guest and the host layers. For

brevity, we report results for five applications at 0.5 unmovability index in both guest and host

(see Figure 2.14). Experiments are reported for the three configurations: 1) when Illuminator

is applied only at the host, 2) when Illuminator is applied only at the guest, and 3) when

Illuminator is applied at both guest and host.

The performance benefits are higher when Illuminator is applied at the guest as compared

to when applied at the host, except for mcf, for which the improvement is comparable in both

35

cases. Intuitively, the best performance is observed when Illuminator is operating in both layers.

For example, the performance of mcf improves by 35% and 41% when Illuminator is deployed

at only host or only guest which effectively increases to 75% when it is deployed at both layers.

Performance improvement for mummer, tigr and canneal is also substantial i.e., 18%, 42%

and 32% in the best case. Similar to the native setup, the best performance improvement is

observed for milc i.e., 131% as compared to Linux.

In our experiments, guest memory fragmentation results in higher performance loss than

host memory fragmentation for two main reasons: 1) our workloads are more sensitive to ad-

dress translation overhead at the guest, except for mcf which is equally sensitive to address

translation performance at both layers. As a result, performance loss in Linux due to frag-

mentation in guest is higher than host memory fragmentation; mcf incurs similar performance

loss in guest only and host only fragmented scenarios. 2) applications are executed after frag-

menting the guest memory. Hence, the overhead of synchronous compaction performed by the

host impacts the process that creates fragmentation; applications that execute after memory

has been fragmented, encounter only the asynchronous compaction of the host. As discussed

previously, the performance implications of asynchronous compaction are modest as compared

to the synchronous compaction. In contrast, both synchronous and asynchronous compaction

of the guest OS impact applications running inside the guest.

2.7 Discussion

Unmovable pages are found in most general-purpose operating systems [96, 9]. For example,

the outermost page tables and DMA pages (without IOMMU support) are inherently unmov-

able [124]. For large memory workloads, page tables can occupy multiple GBs of memory [164]

which highlights the importance of efficiently handling unmovable pages. However, different

operating systems can have different unmovability constraints. Operating system designs that

provide support for movable kernel pages (e.g., Windows, Solaris) are less likely to suffer from

the issues discussed in this chapter. However, not directly mapping memory in the kernel ad-

dress space leads to a complex design and performance issues. Hence OSs with movable kernel

pages also prefer directly mapping at least some part of the kernel virtual address space in

physical memory [162]. For example, FreeBSD reserves a special region in the kernel address

space for directly mapping the objects allocated by its slab-like zone allocator. The high-level

design of its memory manager is also similar to Linux [135, 140]; many of its internal data

structures are wired or unmovable [139], and allocations are handled with the combination of a

zone allocator and a buddy allocator. Hence, an interesting future work is to port Illuminator

to FreeBSD. However, performance implications depend on how much unmovable memory is

36

present and how the kernel defragments memory. A detailed cross OS study on this topic is a

potential future work.

In addition, many prior techniques also demand memory contiguity for improving perfor-

mance or optimizing energy consumption [188, 55, 91]. Understandably, such techniques are

also vulnerable to fragmentation created by unmovable pages. Illuminator can be used to make

them more robust in long-running systems.

2.8 Summary

We address the issue of performance regressions caused by huge pages and show how unmovable

pages can become a major hindrance to fragmentation mitigation. We propose Illuminator – a

simple memory management framework guided by a precise understanding of external memory

fragmentation – to make huge page allocations feasible as well as cost-effective in long-running

systems. With detailed evaluation, we show that Illuminator provides good performance in

both native and virtualized systems. While this chapter has discussed Illuminator only in the

context of huge pages, the proposed techniques are generic and can be helpful in mitigating

other kernel level fragmentation issues. The source code of Illuminator is available at https:

//github.com/apanwariisc/Illuminator.

37

https://github.com/apanwariisc/Illuminator
https://github.com/apanwariisc/Illuminator

Chapter 3

Fine-grained Huge Page Management

In Chapter 2, we discussed the effect of fragmentation on huge pages, and proposed techniques

to make it feasible to allocate huge pages in long-running systems. However, external memory

fragmentation is just one of many huge page management challenges for operating systems.

In this chapter, we dive into the details of policy-level OS challenges for huge pages. First,

we expose some interesting pitfalls in current huge page management policies and then discuss

our proposed system called HawkEye to address the associated challenges.

3.1 Introduction

Modern architectures employ large multi-level TLBs to minimize TLB misses, and further use

page-walk caches to avoid accessing physical memory for address translation. These hardware

structures support multiple page sizes [121, 149, 60, 76]. Therefore, modern systems require

careful OS design to determine suitable page sizes for different workloads [93, 121, 139, 171].

The problem becomes more severe with virtual machines where two layers of address translation

cause additional address translation overheads [58, 91, 151].

Despite robust hardware support available across architectures [26], huge pages have pro-

vided unsatisfactory performance on important applications [2, 7, 8, 12, 17, 15, 16]. In Chap-

ter 2, we discussed the effect of external fragmentation on various performance anomalies with

huge pages. In this chapter, we show that these performance issues also appear due to some

other inadequate OS-based huge page management algorithms [1, 3, 4].

OS-based huge page management algorithms need to balance complex trade-offs between

address translation overheads (aka MMU overheads), memory bloat due to internal fragmen-

tation in huge pages, page fault latency, fairness and the overheads of the algorithm itself. In

this chapter, we discuss some subtleties related to huge pages and expose important weaknesses

38

of current approaches, and propose a new set of algorithms to address them. We begin with

a brief overview of the three representative state-of-the-art systems: Linux, FreeBSD, and a

recent research paper by Kwon et al., i.e., Ingens [121].

Linux: Linux’s transparent huge page (THP) employs huge pages through two mechanisms: (1)

either it allocates a huge page at the time of page fault if contiguous memory is available, or (2)

it promotes base pages to huge pages, by optionally compacting memory [69], in a background

kernel thread called khugepaged. Linux triggers background promotion when external memory

fragmentation is high and huge pages are difficult to allocate at the time of page fault. While

promoting huge pages, khugepaged selects processes in first-come-first-serve (FCFS) order and

promotes all huge pages in a process before selecting the next process. For security, a page

is zeroed synchronously (except for copy-on-write pages) before getting mapped into the user

process’ page table.

FreeBSD: FreeBSD supports multiple huge page sizes [139]. Unlike Linux, FreeBSD reserves

a contiguous region of physical memory in the page fault handler but defers the promotion of

baseline pages until all base pages in a huge page sized region are allocated by the application.

If the reserved memory region is only partially mapped, its unused pages are returned back

to the page allocator when memory pressure increases. This way, FreeBSD manages memory

contiguity more efficiently than Linux, at the potential expense of a higher number of page

faults and higher MMU overheads due to multiple TLB entries, one per baseline page.

Ingens: In the Ingens paper [121], the authors point out pitfalls in the huge page manage-

ment policies of both Linux and FreeBSD and present a policy that is better at handling the

associated trade-offs. In summary: (1) Ingens uses an adaptive strategy to balance address

translation overhead and memory bloat: it uses a conservative utilization-threshold based huge

page allocation to prevent memory bloat under high memory pressure but relaxes the threshold

to allocate huge pages aggressively under no memory pressure, to try and achieve the best of

both worlds. (2) To avoid high page fault latency associated with synchronous page-zeroing,

Ingens avoids allocating huge pages in the page fault handler; instead it defers huge page promo-

tion to an asynchronous background thread. (3) To maintain fairness across multiple processes,

Ingens treats memory contiguity as a resource and employs a share-based policy to allocate

huge pages fairly. Using memory access patterns discovered at runtime, Ingens adjusts the

per-process share value to guide the allocation of huge pages.

The Ingens paper highlights that current OSs deal with huge page management issues

through “spot fixes”, and motivates the need for a principled approach. While Ingens pro-

poses a more sophisticated strategy than previous work, we show that its static configuration

based and heuristic-driven approaches are suboptimal: (1) Ingens relies on user input to han-

39

dle the trade-offs involved in huge pages (e.g., whether to minimize memory footprint or TLB

misses). In general, it is hard for users to identify suitable configuration parameters. (2) In-

gens allocates huge pages using heuristics and lacks adequate knowledge of the actual MMU

overheads experienced by the application. This limits the profitability of huge pages allocated

by Ingens. Overall, we find that several aspects of an OS-based huge page management system

can benefit from a dynamic data-driven approach.

This chapter of the thesis presents HawkEye, an automated OS-level solution for huge page

management. HawkEye proposes a set of simple-yet-effective algorithms to: (1) balance the

trade-offs between memory bloat, address translation overheads, and page fault latency, (2)

allocate huge pages to applications with highest expected performance improvement due to the

allocation, and (3) improve memory sharing behaviour in virtualized systems. We also show

that the actual address-translation overheads, as measured through performance counters, can

be sometimes quite different from the expected/estimated overheads. To demonstrate this, we

also evaluate a variant of HawkEye that relies on hardware performance counters for making

huge page allocation decisions, and compare results. Our evaluation involves workloads with a

diverse set of requirements vis-a-vis huge page management, and demonstrates that HawkEye

can achieve considerable performance improvement over existing systems while adding negligible

overhead (≈ 3.4% single-core overhead in the worst-case).

3.2 Motivation

In this section, we discuss different tradeoffs involved in OS-level huge page management and

how current solutions handle them. We also provide a glimpse of the results achieved through

HawkEye which is discussed in detail in Section 3.3.

3.2.1 Address translation overhead vs. memory bloat

One of the most important tradeoffs associated with huge pages is between MMU overheads

and memory footprint of an application [121, 128, 152]. Note that a huge (e.g., 2MB) page

requires a large contiguous physical memory block. However, the entire huge page may not be

accessed by the application e.g., due to sparse access patterns or internal fragmentation in the

heap. Therefore, huge pages can result in wasted physical memory which is typically referred

to as memory bloat. In data-center applications, huge pages have been observed to increase

memory footprint by as much as 78% [128].

While Linux’s synchronous huge page allocation is aimed at minimizing MMU overheads,

it can often lead to memory bloat when an application uses only a fraction of the allocated

huge page. FreeBSD promotes only after all base pages in a huge page region are allocated.

40

0

8

16

24

32

40

48

1 69 13
7

20
5

27
3

34
1

40
9

47
7

54
5

61
3

68
1

74
9

81
7

88
5

95
3

10
21

10
89

11
57

12
25

12
93

13
61

14
29

14
97

15
65

RS
S

(G
B)

Time (seconds)

Linux Ingens HawkEye

out-of-memory successout-of-memory success

P3

Figure 3.1: Resident Set Size (RSS) of Redis server across 3 phases: P1 (insert), P2 (delete)
and P3 (insert).

Therefore, FreeBSD’s conservative huge page allocation approach tackles memory bloat more

efficiently but sacrifices performance by delaying the mapping of huge pages.

Ingens’ strategy is adaptive, in that it promotes huge pages aggressively to minimize MMU

overheads when there is enough free physical memory is available in the system. Ingens es-

timates the availability of free physical memory using the Free Memory Fragmentation Index

(FMFI is discussed in detail in Section 2.2). A low value of FMFI indicates a low memory pres-

sure situation. Therefore, if FMFI < 0.5 (low fragmentation), Ingens behaves like Linux and

promotes allocated pages to huge pages at the first available opportunity. When FMFI > 0.5

(high fragmentation), Ingens uses a conservative utilization-based strategy (i.e., promotes only

after a certain fraction of base pages, say 90%, are allocated) to mitigate memory bloat. While

Ingens appears to capture the best of both Linux and FreeBSD, we show that this adaptive

policy is far from a complete solution because memory bloat generated in the aggressive phase

remains unrecovered. This property is also true for Linux and we demonstrate this problem

through a simple experiment with the Redis key-value store [67] running on a 48GB memory

system (see Figure 3.1).

We execute a client to generate memory bloat and measure the interaction of different huge

page policies with Redis. For exposition, we divide our workload into three phases: (P1) The

client inserts 11 million key-value pairs of size (10B, 4KB) for an in-memory dataset of 45GB.

(P2) The client deletes 80% randomly selected keys leaving Redis with a sparsely populated

address space. (P3) After some time gap, the client tries to insert 17K (10B, 2MB) key-value

pairs so that the dataset again reaches 45GB. While this workload is used for clear exposition

41

of the problem, it resembles realistic workload patterns that involve a mix of allocation and

deallocation, and leave the address space fragmented. For example, many of Google’s data-

centers workloads exhibit this type of behavior [128]. An ideal system should recover elegantly

from memory bloat to avoid disruptions under high memory pressure.

In phase P2, when randomly selected keys are deleted, Redis releases the corresponding

pages back to the OS through madvise system call [6]. In response, the kernel breaks the

corresponding huge page mappings, reducing the resident-set size (RSS) of Redis to around

11GB. At this point, the kernel’s khugepaged thread promotes the regions containing the

deallocated pages back to huge pages. As more allocations happen in phase P3, Ingens promotes

huge pages aggressively until the RSS reaches 32GB (or fragmentation is low); after that,

Ingens employs conservative promotion to avoid any further bloat. This is evident in Figure 3.1

where the rate of RSS growth decreases, compared to Linux. However both Linux and Ingens

reach memory limit (out-of-memory OOM exception is thrown) at significantly lower memory

utilization. While Linux generates total memory bloat of 28GB (i.e., only 20GB useful data),

Ingens generates 20GB memory bloat (i.e., 28GB useful data). Note that although Ingens

tries to prevent bloat at high memory utilization, it is unable to recover from bloat that gets

generated in the low memory utilization phase.

We note that it is possible to avoid memory bloat in Ingens by configuring it to use only

conservative promotion. However, as also explained in the Ingens paper, this strategy risks

losing performance due to high MMU overheads in low memory pressure situations. An ideal

strategy should promote huge pages aggressively but should also be able to recover from bloat

in an elegant fashion. Figure 3.1 shows HawkEye’s behaviour for this workload, which is able

to effectively recover from memory bloat, even with an aggressive promotion strategy.

3.2.2 Page fault latency vs. number of page faults

The OS often needs to clear (zero) a page before mapping it into the process address space

to prevent insecure information flow across applications. Clearing a page is significantly more

expensive for huge pages: in Linux on our experimental system, clearing a base page takes

about 25% of total page fault time which increases to 97% for huge pages! High page fault

latency often leads to high user-perceived latencies, jeopardizing performance for interactive

applications. Ingens avoids this problem by allocating only base pages in the page fault handler

and relegating the promotion task to an asynchronous thread khugepaged. To account for

temporal locality, it prioritizes the promotion of recently faulted regions over older allocations.

While Ingens reduces page allocation latency, it nullifies an important advantage of huge

pages, namely fewer page faults for access patterns exhibiting high spatial locality [33]. Several

42

Event
sync page-zeroing

async
promotion

no page-zeroing

Linux
4KB

Linux
2MB

Ingens
90%

Linux
4KB

Linux
2MB

Page faults 26.2M 51.5K 26.2M 26.2M 51.5K
Total page fault time (secs) 92.6 23.9 92.8 69.5 0.7
Avg page fault time (µs) 3.5 465 3.5 2.65 13
System time (secs) 102 24 104 79 1.3
Total time (secs) 106 24.9 116 83 4.4

Table 3.1: Page faults, allocation latency and performance for a microbenchmark with ≈100GB
memory allocation.

applications that allocate and initialize a large memory region sequentially exhibit this type

of access pattern and their performance degrades due to higher number of page faults if only

base pages are allocated. We demonstrate the severity of this problem through a custom micro-

benchmark that allocates a 10GB buffer, touching one byte in every base page and later frees

the buffer. Table 3.1 shows the cumulative performance summary for 10 runs of this micro-

benchmark.

Linux with THP support (Linux-2MB with sync page-zeroing in Table 3.1) reduces the

number of page faults by more than 500× over Linux without THP support (Linux-4KB)

and leads to more than 4× performance improvement for this workload, despite being 133×
worse on average page fault latency (465µs vs. 3.5µs). Ingens considerably reduces latency

compared to Linux-2MB but does not reduce the number of page faults for this workload

because asynchronous promotion is activated only after 90% base pages are allocated from a

region; copying these pages to a contiguous memory block takes more time than the time taken

by this workload to generate the remaining 10% page faults in the same region. Consequently,

the overall performance of this workload degrades in Ingens due to excessive page faults. If it

were possible to allocate pages without having to zero them at page fault time, we could achieve

both low page fault latency and fewer page faults resulting in higher overall performance over

all existing approaches (last two columns in Table 3.1). HawkEye implements rate-limited

asynchronous page pre-zeroing (Subsection 3.3.1) to achieve this in the common case.

3.2.3 Huge page allocation across multiple processes

Another policy challenge that appears for a huge page management system is about how to

allocate huge pages when the demand for huge pages exceed the supply of contiguous physical

memory? As discussed in Chapter 2, physical memory fragmentation is a common occurrence in

long-running systems. Under such situations, the OS must allocate huge pages among multiple

43

processes fairly. Ingens authors tackled this problem by defining fairness through a proportional

huge page promotion wherein they consider “memory contiguity as a resource” and try and be

equitable in distributing it (through huge pages) among applications.

Ingens allocates huge pages based on per-process huge page share priority (say, S). To

account for workload-specific requirement, Ingens starts each application with the same value

of S but adjusts it at runtime by penalizing applications that have been allocated huge pages

but are not accessing them frequently (i.e., have idle huge pages). It estimates idleness of a

page through the access-bit present in the page table entries which is set by the hardware and

periodically cleared by the OS. Ingens employs an idleness penalty factor whereby an application

is penalized for its idle, or cold, huge pages during the computation of S. The idleness penalty

factor is a tunable parameter in Ingens.

We find that Ingens’ fairness policy has an important weakness — two processes may have

similar huge page requirements but one of them (say P1) may have significantly higher TLB

pressure than the other (say P2). This can happen, for example, if P1’s accesses are spread

across many base pages within its huge page regions, while P2’s accesses are concentrated in

one (or a few) base pages within its huge page regions. In this scenario, promotion of huge

pages in P1 is more desirable than P2 but Ingens would treat them equally.

Table 3.2 provides some empirical evidence showing that different applications usually be-

have quite differently vis-a-vis huge pages. For example, less than 20% of the total applications

in popular benchmark suites experience noticeable performance improvement (> 3%) with huge

pages.

We posit that instead of considering “memory contiguity as a resource” and granting it

equally among processes, it is more effective to consider “MMU overhead as a system overhead”

and try and ensure that it is distributed equally across processes. A fair algorithm should

attempt to equalize MMU overheads across all applications, e.g., if two processes P1 and P2

experience 30% and 10% MMU overheads respectively, then huge pages should be allocated to

P1 until its overhead also reaches 10%. In doing so, it should be acceptable if P1 has to be

allocated more huge pages than P2. Such a policy would additionally yield the best overall

system performance by helping the most afflicted processes first.

Further, in Ingens, huge page promotion is triggered in response to a few page-faults in the

aggressive (non-fragmented) phase. These huge pages are not necessarily frequently accessed

by the application; yet they contribute to a process’s allocation quota of huge pages. Under

memory pressure, these idle huge pages lower the huge page share S of a process, potentially

preventing the OS from allocating more huge pages to it. This would increase MMU overheads

if the process had other hot (frequently accessed) memory regions that required huge page

44

Benchmark Suite
Number of applications

Total TLB sensitive applications
SPEC CPU2006 int 12 4 (mcf, astar, omnetpp, xalancbmk)
SPEC CPU2006 fp 19 3 (zeusmp, GemsFDTD, cactusADM)
PARSEC 13 2 (canneal, dedup)

SPLASH-2 10 0
Biobench 9 2 (tigr, mummer)
NPB 9 2 (cg, bt)
CloudSuite 7 2 (graph-analytics, data-analytics)

Total 79 15

Table 3.2: Number of TLB sensitive applications in popular benchmark suites. We consider an
application to be TLB sensitive if its address translation overhead is more than 3%.

promotion. This behaviour where previously-allocated cold huge pages can prevent an applica-

tion from being allocated huge pages for its frequently accessed regions seems sub-optimal and

avoidable.

Finally, within a process, Linux and Ingens promote huge pages through a sequential scan

from lower to higher virtual addresses (VAs). This approach is unfair to processes whose hot

regions lie in the higher VAs. Because different applications would usually contain hot regions

in different parts of their VA spaces (see Figure 3.6a and Figure 3.7a), this scheme is likely to

cause unfairness in practice.

3.2.4 How to capture address translation overheads?

It is common to estimate MMU overheads based on working-set size (WSS) [129]: in expecta-

tion, bigger WSS should entail higher MMU and performance overheads. We find that this is

often not true for modern hardware where access patterns play an important role in determining

MMU overheads, e.g., sequential access patterns allow prefetching to hide TLB miss latencies.

Further, different TLB miss requests can experience high latency variations: a translation may

be present anywhere in the multi-level page walk caches, multi-level regular data caches or in

main memory. For these reasons, WSS is often not a good indicator of MMU overheads. Ta-

ble 3.3 demonstrates this with the NAS Parallel Benchmark Suite [49]: a workload with large

WSS (e.g., mg.D) can have low MMU overheads compared to one with a smaller WSS (e.g.,

cg.D).

It is not clear to us how an OS can reliably capture MMU overheads: these are dependent

on complex interactions between applications and the underlying hardware architecture, and

we show that the actual address translation overheads of a workload can be quite different

45

Workload RSS WSS
% TLB-misses
(native-4KB)

% cycles speedup
4KB 2MB native virtual

bt.D 10GB 7-10 GB 0.45 6.4 1.31 1.05 1.15
sp.D 12GB 8-12 GB 0.48 4.7 0.25 1.01 1.06
lu.D 8GB 8 GB 0.06 3.3 0.18 1.0 1.01
mg.D 26GB 24 GB 0.03 1.04 0.04 1.01 1.11
cg.D 16GB 7-8 GB 28.57 39 0.02 1.62 2.7
ft.D 78 GB 7-35 GB 0.21 3.9 2.14 1.01 1.04
ua.D 9.6 GB 5-7 GB 0.01 0.8 0.03 1.01 1.03

Table 3.3: Memory characteristics i.e., resident set size (RSS), working set size (WSS), address
translation overheads and speedup huge pages provide over base pages for NPB workloads. %
cycles denote the fraction of total CPU cycles spend in address translation.

Performance Counter
C1 DTLB LOAD MISSES.WALK DURATION
C2 DTLB STORE MISSES.WALK DURATION
C3 CPU CLK UNHALTED
MMU Overhead = ((C1 + C2) * 100) / C3

Table 3.4: Methodology used to measure MMU Overhead [114].

from what can be estimated through its memory access pattern (e.g., working-set size). Hence,

we propose directly measuring TLB miss overheads through hardware performance counters

when available (see Table 3.4 for methodology). This approach enables a more efficient solu-

tion at the cost of portability as the required performance counters may not be available on

all platforms (e.g., most hypervisors have not yet virtualized TLB-related performance coun-

ters). To overcome this challenge, we present two variants of our algorithm/implementation

in HawkEye/Linux, one where the MMU overheads are measured through hardware perfor-

mance counters (HawkEye-PMU), and another where MMU overheads are estimated through

the memory access pattern (HawkEye-G). We compare both approaches in Section 3.4.

3.3 Design and Implementation

Figure 3.2 shows our high-level design objectives. Our solution is based on four primary obser-

vations: (1) high page fault latency for huge pages can be avoided by asynchronously pre-zeroing

free pages; (2) memory bloat can be tackled by identifying and de-duplicating zero-filled baseline

pages present within allocated huge pages; (3) promotion decisions should be based on finer-

grained access tracking of huge page sized regions, and should include recency, frequency, and

access-coverage (i.e., how many baseline pages are accessed inside a huge page) measurements;

46

Low Memory Pressure High Memory Pressure

1. Fewer Page Faults
2. Lowlatency Allocation
3. High Performance

1. High Memory Efficiency
2. Efficient Huge Page Promotion
3. Fairness

Figure 3.2: Our design objectives in HawkEye.

and (4) fairness should be based on estimation of MMU overheads.

3.3.1 Asynchronous page pre-zeroing

We propose that page zeroing of available free pages should be performed asynchronously in a

rate-limited background kernel thread to eliminate high latency allocation. We call this scheme

async pre-zeroing. Async pre-zeroing is a rather old idea and had been discussed extensively

among kernel developers in early 2000s [18, 19, 24, 85]∗. Linux developers opined that async

pre-zeroing is not an overall performance win for two main reasons. We think that it is time to

revisit these opinions.

First, the async pre-zeroing thread might interfere with primary workloads by polluting

hardware data caches [18]. In particular, async pre-zeroing suffers from the “double cache

miss” problem because it causes the same datum to be accessed twice with a large re-use

distance: first for pre-zeroing, and then for the actual access by the application. These extra

cache misses are expected to degrade overall performance in general. However, these problems

are partially solvable on modern hardware that support memory writes with non-temporal

hints: non-temporal hints instruct the hardware to bypass caches during memory load/store

instructions [87]. We find that using non-temporal hints during pre-zeroing significantly reduces

both cache contention and the double cache miss problem.

Second, there was no consensus or empirical evidence to demonstrate the benefits of page

pre-zeroing for real workloads [18, 86]. We note that the early discussions on page pre-zeroing

were evaluating trade-offs with baseline 4KB pages. Our experiments corroborate the kernel

developers’ observation that despite reducing the page fault overhead by 25%, pre-zeroing does

not necessarily enable high performance with 4KB pages. At the same time, we also show that

it enables non-negligible performance improvements (e.g., 14× faster VM boot-time) with huge

pages, due to much higher reduction (97%) in page fault overheads. Since huge pages (and

∗Windows and FreeBSD implement async pre-zeroing in a limited fashion [32, 22]. However, these operating
systems do not allocate transparent huge pages eagerly in the page fault handler. Therefore, this idea is more
relevant to Linux because it uses synchronous huge page allocations.

47

huge-huge pages) are supported by most general-purpose processors today [26, 41], pre-zeroing

pages is an important optimization that is worth revisiting.

Pre-zeroing offers another advantage for virtualized systems: it increases the number of zero

pages in the guest’s physical address (GPA) space enabling opportunities for content-based

page-sharing at the virtualization host. We evaluate this aspect in Section 3.4.

To implement async pre-zeroing, HawkEye manages free pages in the Linux buddy allocator

through two lists: zero and non-zero. Pages released by applications are first added to the

non-zero list while the zero list is preferentially used for allocation. A rate-limited thread

periodically transfers pages from non-zero to zero lists after zero-filling them using non-

temporal writes. Because pre-zeroing involves sequential memory accesses, non-temporal store

instructions provide performance similar to regular (caching) store instructions, but without

polluting the cache [21]. Finally, we note that for copy-on-write or filesystem-backed memory

regions, pre-zeroing may sometimes be unnecessary and wasteful. This problem is avoidable by

preferentially allocating pages for these memory regions from the non-zero list.

Overall, we believe that async pre-zeroing is a compelling idea for modern workload require-

ments and modern hardware support. In our evaluation, we provide some early evidence to

corroborate this claim with different workloads.

3.3.2 Managing memory bloat vs. address translation performance

To manage the trade-offs between memory bloat and address translation overhead, Linux and

FreeBSD use a static design-time policy favoring different optimizations. While Linux eagerly

allocates huge pages at the first opportunity to minimize TLB coverage, FreeBSD uses lazy

allocation to favor reducing memory footprint. Clearly, none of these approaches are ideal e.g.,

Linux is suboptimal in terms of memory footprint and FreeBSD is suboptimal in terms of TLB

coverage. Ingens improves upon prior approaches but it relies on user inputs and is susceptible

to parameter misconfiguration.

We find that it is possible to build a dynamic system that can automatically find a sweet-spot

in trade-off space that exists for memory bloat and address translation. A dynamic approach is

also desirable because the amount of physical memory that is available at runtime is unknown

to users and developers. For example, in a virtualized environment, the amount of memory

available depends on the need of co-running workloads. Therefore, an OS should adjust huge

page allocations based on the dynamic state of the system. As long as enough free memory

is available, it should be utilized to aggressively minimize MMU overheads. However, when

physical memory becomes a contended resource, then the OS should reclaim memory bloat

from huge pages to avoid out-of-memory failures or disk-based swapping. HawkEye achieves

48

this objective without relying on user input.

Our approach stems from the insight that most allocations in large-memory workloads are

typically “zero-filled page allocations”; the remaining are either filesystem-backed (e.g., through

mmap) or copy-on-write (COW) pages. However, huge pages in modern scale-out workloads are

primarily used for “anonymous” pages that are initially zero-filled by the kernel [114], e.g.,

Linux supports huge pages only for anonymous memory. This property of typical workloads

and Linux allows automatic recovery of bloat under memory pressure.

To state our approach succinctly: we allocate huge pages at the time of first page-fault; but

under memory pressure, to recover unused memory, we scan existing huge pages to identify

zero-filled baseline pages within them. If the number of zero-filled baseline pages inside a huge

page is significant (i.e., beyond a threshold), we break the huge page into its constituent baseline

pages and de-duplicate the zero-filled baseline pages to a canonical zero-page through standard

COW page management techniques [64]. In this approach, it is possible for applications’ in-use

zero-pages to also get de-duplicated. While this can result in a marginally higher number of

COW page faults in rare situations, this does not compromise correctness.

To trigger recovery from memory bloat, HawkEye uses two watermarks on the amount of

allocated memory in the system: high and low. When the amount of allocated memory exceeds

high (85% in our prototype), a rate-limited bloat-recovery thread is activated which executes

periodically until the allocated memory falls below low (70% in our prototype). At each step,

the bloat-recovery thread chooses the application whose huge page allocations need to be

scanned (and potentially demoted) based on the estimated MMU overheads of that application:

the application with the lowest estimated MMU overheads is chosen first for scanning. This

strategy ensures that the application that least requires huge pages is considered first — this

is consistent with our huge page allocation strategy (Subsection 3.2.3).

While scanning a baseline page to verify if it is zero-filled, we stop on encountering the

first non-zero byte in it. In practice, the number of bytes that need to be scanned per in-use

(not zero-filled) page before a non-zero byte is encountered is very small: we measured this

over a total of 56 diverse workloads, and found that the average offset of the first non-zero

byte in a 4KB page is only 9.11 (see Figure 3.3). Hence, only ten bytes need to be scanned on

average per in-use application page. For bloat pages however, all 4096 bytes need to be scanned.

This implies that the overheads of our bloat-recovery thread are largely proportional to the

number of bloat pages in the system, and not to the total size of the allocated memory. This

is an important property that allows our method to scale to large memory systems.

We note that our bloat-recovery procedure has many similarities with the standard de-

duplication kernel threads used for content-based page sharing for virtual machines [182], e.g.,

49

67.5
55.4

115.5

3.9 2.8 1.2 1 6.63

27.4
9.11

0

30

60

90

120

150

o
ff

se
t

o
f

th
e

fi
rs

t
n

o
n

-z
er

o
 b

yt
e

Figure 3.3: Average offset to the first non-zero byte in baseline (4KB) pages. First four bars
represent the average of all workloads in the respective benchmark suite.

the kernel same-page merging (ksm) thread in Linux [142]. Unfortunately, in current kernels,

the huge page management logic (e.g., khugepaged) and the content-based page sharing logic

(e.g., ksm) are unconnected and can often interact in counter-productive ways [102]. Ingens

and SmartMD [100] proposed coordinated mechanisms to avoid such conflicts: Ingens demotes

only infrequently-accessed huge pages through ksm while SmartMD demotes pages based on

access-frequency and repetition rate (i.e., the number of shareable pages within a huge page).

These techniques are useful for in-use pages and our bloat-recovery proposal complements

them by identifying unused zero-filled pages, which can execute much faster than the typical

same-page merging logic.

3.3.3 Fine-grained huge page promotion

An efficient huge page promotion strategy should try to maximize performance with a minimal

number of huge page promotions. Current systems promote pages through a sequential scan

from lower to higher VAs which is inefficient for applications whose TLB sensitive memory

regions are not in lower part of the virtual address space. Our approach makes promotion deci-

sions based on memory access patterns. First we define an important metric used in HawkEye

to maximize the performance benefits of huge page promotions.

Access-coverage: it denotes the number of base pages that are accessed from a huge

page sized region in a short interval.

50

9
8
7
6
5
4
3
2
1
0

B1

B2

B3 B4

B
9
8
7
6
5
4
3
2
1
0

C1

C3

C5

C

C4

C29
8
7
6
5
4
3
2
1
0

access_map

A1

A2 A3

A
or

de
r o

f p
ro

m
ot

io
n

ho
t-
re
gi
on
s

co
ld
-r
eg
io
ns

access_map access_map

Figure 3.4: A sample representation of access map for three processes A, B and C.

We sample the page table access bits at regular intervals and maintain the exponential

moving average (EMA) of access-coverage across different samples. More precisely, we clear the

page table access bits and test the number of set bits after 1 second to check how many pages

are accessed. This process is repeated once every 30 seconds.

The access-coverage of a region potentially indicates its TLB space requirement (number of

base page entries required in the TLB), which we use to estimate the profitability of promoting

it to a huge page. It also captures the relative TLB miss frequency of different huge page sized

regions. A region with high access-coverage is likely to exhibit high contention on TLB and

hence likely to benefit more from promotion.

HawkEye implements access-coverage based promotion using a per-process data structure,

called access map, which is an array of buckets: a bucket contains huge page regions with

similar access-coverage. On x86 with 2MB huge pages, the value of access-coverage is in the

range of 0-512. In our prototype, we maintain ten buckets in the access map which provides

the necessary resolution across access-coverage values at relatively low overheads: regions with

access-coverage of 0-49 are placed in bucket 0, regions with access-coverage of 50−99 are placed

in bucket 1, and so on. Figure 3.4 shows an example state of the access map of three processes

A, B and C. Regions can move up or down in their respective arrays after every sampling

period, depending on their newly computed EMA-based access-coverage. If a region moves up

in access map, we add it to the head of its bucket. If a region moves down, we add it to the

tail. Within a bucket, pages are promoted from head to tail. This strategy helps in prioritizing

recently accessed regions within an index.

51

HawkEye promotes regions from higher to lower indices in access map. Notice that our

approach captures both recency and frequency of accesses: a region that has not been accessed

or accessed with low access-coverage in recent sampling periods is likely to shift towards a lower

index in access map or towards the tail in its current index. Promotion of cold regions is thus

automatically deferred to prioritize recently accessed regions.

We note that HawkEye’s access map data structure is somewhat similar to

population map [139] and access bitvector [121] used in FreeBSD and Ingens resp.; these

data structures are primarily used to capture utilization or page access related metadata at

huge page granularity. HawkEye’s access map additionally provides the index of hotness of

memory regions and enables fine-grained huge page promotion.

3.3.4 Huge page allocation across multiple processes

In our access-coverage based strategy, regions belonging to a process with the highest expected

MMU overheads are promoted before others. This is also consistent with our notion of fairness,

as pages are promoted first from regions/processes with high expected TLB pressure (and

consequently high expected MMU overheads).

Our HawkEye variant that does not rely on hardware performance counters (i.e., HawkEye-

G), promotes regions from the non-empty highest access-coverage index in all processes. It is

possible that multiple processes have non-empty buckets in the (globally) highest non-empty

index. In this case, round-robin is used to ensure fairness among such processes. We explain

this further with an example. Consider three applications A, B and C with their VA regions

arranged in the access map as shown in Figure 3.4. HawkEye-G promotes regions in the

following order in this example:

A1,B1,C1,C2,B2,C3,C4,B3,B4,A2,C5,A3

Recall however that MMU overheads may not necessarily be correlated with our access-

coverage based estimation, and may depend on other more complex features of the access

pattern (see Subsection 3.2.4). To capture this in HawkEye-PMU, we first choose the process

with the highest measured MMU overheads, and then choose regions from higher to lower indices

in selected process’s access map. Among processes with similar highest MMU overheads, we

use round-robin to ensure fairness.

3.3.5 Limitations and discussion

We briefly outline a few important aspects related to huge page management that we have not

currently handled in HawkEye.

1) Identifying thresholds to detect memory pressure: We measure the extent of memory

52

pressure with statically configured values for low and high watermarks (i.e., 70% and 85% of

total system memory) while dealing with memory bloat. This approach is inline with Linux’s

methodology to estimate memory pressure situations. However, any strategy that relies on

static thresholds faces the risk of being conservative or overly aggressive when memory pressure

consistently fluctuates. An ideal solution should adjust these thresholds dynamically to prevent

unintended system behavior. The approach proposed by Guo et. al. [102] in the context of

memory deduplication for virtualized environments is relevant in this context.

2) Putting a hard limit on huge page allocation: While we believe our approach of

allocating huge pages based on MMU overheads optimizes the system as a whole, unbounded

huge page allocations to a single process can be thought of as a starvation problem for other

processes. An adverserial application can also potentially monopolize HawkEye to get more

huge pages or prevent other applications from getting a fair share of huge pages. Preliminary

investigations show that our approach is reasonable even if the memory footprint of workloads

differ by more than an order of magnitude. However, if limiting huge page allocations is still

desirable, it seems reasonable to integrate a policy with existing resource limiting/monitoring

tools, such as cgroups in Linux [31].

3) Other algorithms: We do not discuss some parts of the management algorithms, such as

rate limiting khugepaged to reduce promotion overheads, demotion based on low utilization to

enable better sharing through same-page merging, and techniques for minimizing the overhead

of page-table access-bit tracking. Much of this material has been discussed and evaluated exten-

sively in the literature [55, 121, 189], and we have not contributed significantly new approaches

in these areas.

3.4 Evaluation

We now evaluate our algorithms in more detail. Our experimental platform is an Intel Haswell-

EP based E5-2690 v3 server system running CentOS v7.4, on which 96GB memory and 48 cores

(with hyperthreading enabled) running at 2.3GHz are partitioned on two sockets: we bind each

workload to a single socket to avoid NUMA effects. The L1 TLB contains 64 and 8 entries

for 4KB and 2MB pages respectively while the L2 TLB contains 1024 entries for both 4KB

and 2MB pages. The size of L1, L2 and shared L3 cache is 768KB, 3MB and 30MB resp. A

96GB SSD-backed swap partition is used to evaluate performance in an overcommitted system.

We evaluate HawkEye with a diverse set of workloads ranging from HPC, graph algorithms,

in-memory databases, genomics and machine learning [12, 176, 49, 56, 62, 43, 105, 177]. To

ensure a fair comparison with Ingens, we implemented HawkEye in Linux kernel version 4.3.

We evaluate (a) the improvements due to our fine-grained promotion strategy based on

53

0

6

12

18

24

Graph500 XSBench NPB_CG.D

%
 s

p
ee

d
u

p
 o

ve
r

4
K

B
 p

ag
es

Linux Ingens HawkEye-PMU HawkEye-G

(a) Performance speedup over 4KB pages

0

200

400

600

800

1000

1200

Graph500 XSBench NPB_CG.D

Ti
m

e
sa

ve
d

 p
er

 h
u

ge
 p

ag
e

(m
ill

is
ec

o
n

d
s)

(b) Time saved per huge page promotion

Figure 3.5: Performance speedup (top sub-figure) and time saved per huge page promotion
(bottom sub-figure) over baseline pages.

access-coverage in both performance and fairness for single, multiple homogeneous, and multiple

heterogeneous workloads; (b) the bloat-vs-performance trade-off; (c) the impact of low latency

page faults; (d) cache interference caused by asynchronous pre-zeroing thread; and (e) the

impact of memory efficiency enabled by asynchronous page pre-zeroing.

3.4.1 Performance advantages of fine-grained huge page promotion

We first evaluate the effectiveness of our access-coverage based promotion strategy (see Fig-

ure 3.5. For this, we measure the time required for our algorithm to recover from a fragmented

state with high address translation overheads to a state with low address translation overheads.

Recall that HawkEye promotes pages based on access-coverage while previous approaches pro-

mote pages in virtual address order (from low to high). We fragment the memory initially by

reading several files in memory; our test workloads are started in the fragmented state and we

54

(a) Access-coverage in the virtual address regions

0

10

20

30

40

50

60

M
M

U
 o

ve
rh

ea
d

 (
%

)

Time (seconds)

Linux Ingens HawkEye-PMU HawkEye-G

300 600 900 1200 1500

(b) MMU overhead over time

0

200

400

600

800

1000

N
u

m
b

er
 o

f
h

u
ge

 p
ag

es

Time (seconds)

300 600 900 1200 1500

(c) Number of huge page promotions

Figure 3.6: Access-coverage in application virtual address space, MMU overhead and the num-
ber of huge page promotions for Graph500. HawkEye reduces MMU overhead much faster and
with fewer huge pages than Linux and Ingens.

55

0

128

256

384

512
ac

ce
ss

-c
o

ve
ra

ge

Virtual address space

XSBench

(a) Access-coverage in the virtual address regions

0

10

20

30

40

50

60

M
M

U
 o

ve
rh

ea
d

 (
%

)

Time (seconds)

Linux Ingens HawkEye-PMU HawkEye-G

400 800 1200 1600 2000 2400

(b) MMU overhead over time

0

400

800

1200

1600

2000

N
u

m
b

er
 o

f
h

u
ge

 p
ag

es

Time (seconds)

400 800 1200 1600 2000 2400

(c) Number of huge page promotions

Figure 3.7: Access-coverage in application virtual address space, MMU overhead and the num-
ber of huge page promotions for XSBench. HawkEye reduces MMU overhead much faster and
with fewer huge pages than Linux and Ingens.

56

measure the time taken for the system to recover from high MMU overheads. This experimental

setup simulates expected realistic situations where the memory fragmentation in the system

fluctuates over time.

Without huge page promotion, our test workloads would keep incurring high address trans-

lation overheads. We use this configuration as the baseline system. HawkEye is quickly able

to recover from these overheads through appropriate huge page allocations. Figure 3.5a shows

the performance improvement obtained by HawkEye (over the baseline strategy that never pro-

motes pages) for three workloads: Graph500, XSBench and cg.D. These workloads allocate all

their required memory in the beginning, i.e., in the fragmented state of the system. For these

workloads, the speedups due to effective huge page management through HawkEye are as high

as 22%. Compared to Linux and Ingens, access-coverage based huge page promotion strategy

of HawkEye improves performance by 13%, 12% and 6% over both Linux and Ingens.

To understand this more clearly, Figure 3.6 shows the access pattern, MMU overheads and

the number of huge pages promoted over time for Graph500 (see Figure 3.6a, Figure 3.6b,

and Figure 3.6c). Figure 3.7 shows the same for XSBench (see Figure 3.7a, Figure 3.7b, Fig-

ure 3.7c).

Figure 3.6a and Figure 3.7a clearly show that TLB hot-spots in these applications are

concentrated in the higher end of virtual address space. Therefore, a sequential-scanning based

promotion is likely to be sub-optimal because it will take a significant time to reach the most

TLB sensitive regions. Figure 3.6b and Figure 3.7b corroborate this observation: for example,

both HawkEye variants take ≈300 seconds to eliminate MMU overheads of XSBench while Linux

and Ingens have high overheads even after 1000 seconds of execution. Figure 3.6c and Figure 3.7c

show that HawkEye achieves these benefits with similar or fewer huge pages than Linux and

Ingens.

To quantify the cost-benefit analysis of huge page promotions further, we propose a new

metric: the average execution time saved (over using only baseline pages) per huge page promo-

tion. A scheme that maximizes this metric would be most effective in reducing MMU overheads.

Figure 3.5b shows that HawkEye performs significantly better than Linux and Ingens on this

metric. The difference between the efficiency of HawkEye-PMU and HawkEye-G is also evident:

HawkEye-PMU is more efficient as it stops promoting huge pages when MMU overheads are

below a certain threshold (2% in our experiments). In summary, HawkEye-G and HawkEye-

PMU are up to 6.7× and 44× more efficient (for XSBench) than Linux in terms of time saved

per huge page promotion.

For other workloads that we evaluate in this chapter, we find that their access patterns are

spread uniformly over the virtual address space. Therefore, HawkEye does not provide any

57

Workload
Execution Time (seconds)

Linux-4KB Linux-2MB Ingens HawkEye-PMU HawkEye-G
Graph500-1 2270 2145(1.06) 2243(1.01) 1987(1.14) 2007(1.13)
Graph500-2 2289 2252(1.02) 2253(1.02) 1994(1.15) 2013(1.14)
Graph500-3 2293 2293(1.0) 2299(1.00) 2012(1.14) 2018(1.14)
Average 2284 2230(1.02) 2265(1.01) 1998(1.14) 2013(1.13)

XSBench-1 2427 2415(1.0) 2392(1.01) 2108(1.15) 2098(1.15)
XSBench-2 2437 2427(1.0) 2415(1.01) 2109(1.15) 2110(1.15)
XSBench-3 2443 2455(1.0) 2456(1.00) 2133(1.15) 2143(1.14)
Average 2436 2432(1.0) 2421(1.00) 2117(1.15) 2117(1.15)

Table 3.5: Execution time of 3 instances of Graph500 and XSBench when executed simultane-
ously. Values in parentheses represent speedup over baseline pages.

significant benefits for these applications and behaves similar to Linux and Ingens.

3.4.2 Fairness advantages of fine-grained huge page promotion

We next experiment with multiple applications to study both performance and fairness, first

with identical applications, and then with heterogeneous applications, running simultaneously.

Identical workloads: To understand the effect of different huge page promotion policies on

identical workloads, we perform two experiments. In the first experiment, we execute three

identical instances of Graph500, launching them one after the other with a few seconds gap in

between. Our second experiment does the same with XSBench. To distinguish different instances

of the same workload, we label them based on the process creation order e.g., Graph500-1

denotes the first instance of Graph500 while Graph500-2 and Graph500-3 denote the second

and third instances.

Figure 3.8 and Figure 3.9 show the MMU overheads and huge page allocations of all three

instances of Graph500, respectively. Figure 3.10 and Figure 3.11 show the same for XSBench.

Table 3.5 shows the execution time of each workload instance of Graph500 and XSBench for the

same experiment.

It is evident that Linux creates performance imbalance by promoting huge pages in one

process at a time (based on the process arrival order). It first allocates huge pages to the first

instance of the workloads, and moves to the next workload only after promoting the entire

address space in the prior process. Its effect on the performance in quite visible for Graph500

where the MMU overhead of Graph500-1 (the first instance) drops in about 20 minutes, and

that of the second instance Graph500-2 in about 38 minutes. Unlike Linux, Ingens promotes

huge pages proportionally in all three instances. However, it fails to improve the performance

58

0

10

20

30

40

50
Linux

10 20 30 40 50

0

10

20

30

40

50
HawkEye-PMU

0

10

20

30

40

50

Time (minutes)

HawkEye-G

10 20 30 40

0

10

20

30

40

50
Ingens

M
M

U
 o

ve
rh

ea
d

 (
%

)

Figure 3.8: MMU overheads of three identical instances of Graph500 while running simultane-
ously. Linux allocates huge pages in the order of process creation, and therefore MMU overheads
reduce in the same order. Ingens allocates huge pages fairly but takes longer to reduce MMU
overhead as it allocates many huge pages in TLB insensitive regions for these applications (low
virtual addresses). HawkEye uses hardware performance counters and access-coverage based
huge page promotion and is therefore more efficient than Linux and Ingens.

59

0

250

500

750

1000

0

250

500

750

1000

0

250

500

750

1000

0

250

500

750

1000

Time (minutes)

N
u

m
b

er
 o

f
h

u
ge

 p
ag

es
 p

ro
m

o
te

d
 b

y
kh

u
ge

p
ag

ed

Linux

Ingens

HawkEye-PMU

HawkEye-G

10 20 30 40

Figure 3.9: Number of huge pages promoted for all three instances of Graph500 over time. Linux
promotes huge pages in the order of process creation (e.g., Graph500-1 followed by Graph500-2,
and so on). Ingens promotes huge pages to all instances at the same rate (overlapping lines
not visible in the graph). HawkEye also promotes huge pages at roughly similar rate to all
instances, but based on the estimated benefits of allocation.

60

0

10

20

30

40

50
Linux

0

10

20

30

40

50
Ingens

0

10

20

30

40

50
HawkEye-PMU

M
M

U
 o

ve
rh

ea
d

 (
%

)

0

10

20

30

40

50
HawkEye-G

Time (minutes)

10 20 30 40 50

Figure 3.10: MMU overheads of three identical instances of XSBench while running simultane-
ously. Linux and Ingens takes a long time to reach the most TLB sensitive regions (high virtual
addresses). Therefore, they are unable to reduce MMU overheads in this case. HawkEye uses
hardware performance counters and access-coverage based huge page promotion and is therefore
more efficient than Linux and Ingens.

61

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

Time (minutes)

Linux

Ingens

HawkEye-PMU

HawkEye-G

10 20 30 40 50

N
u

m
b

er
 o

f
h

u
ge

 p
ag

es
 p

ro
m

o
te

d
 b

y
kh

u
ge

p
ag

ed

Figure 3.11: Number of huge pages promoted for all three instances of XSBench over time.
Linux promotes huge pages in the order of process creation. Ingens promotes huge pages to all
instances at the same rate. HawkEye also promotes huge pages at roughly similar rate to all
instances, but based on the estimated benefits of huge pages (note that overlapping lines are
not clearly visible for Ingens and HawkEye-G.

62

of these workloads. In fact, it may lead to poorer performance than Linux, as is visible for

Graph500-1 in Table 3.5. We explain this behaviour with an example.

Linux selects Graph500-1’s address space first and promotes all pages in it in around 20 min-

utes. Even though this strategy is unfair, it improves the performance of Graph500-1 because

the TLB-sensitive region from the higher end of Graph500-1’s address space is also promoted.

Linux then selects Graph500-2 whose MMU overheads decrease after ≈38 minutes. In contrast,

Ingens promotes huge pages from lower virtual address regions in each instance of Graph500.

Thus it spends considerable time in promoting huge pages that are not really beneficial – note

that the most TLB sensitive regions are towards the higher end of the virtual address space in

Graph500 and XSBench. This delays the promotion of huge pages in TLB sensitive regions for

our workloads. Ultimately, this behavior leads to 5% performance degradation for Ingens, as

compare to Linux for Graph500-1. For XSBench, the performance of both Ingens and Linux is

similar (but inferior to HawkEye) because both fail to promote the application’s TLB sensitive

regions before the application finishes.

HawkEye ensures fairness and efficiency by judiciously distributing huge pages across all

workload instances, and promoting huge pages for the most TLB sensitive regions within each

address space. For example, HawkEye-PMU reduces the MMU overhead of all three instances

of Graph500 within 15 minutes whereas the same workloads continue to execute with high

MMU overheads even after 30 minutes in Linux and Ingens(see Figure 3.8). Overall, HawkEye-

PMU and HawkEye-G achieve 1.12× and 1.11× speedup for Graph500, and 1.15× speedup for

XSBench over Linux, on average (see Table 3.5).

Heterogeneous workloads: To measure the efficacy of different strategies for heterogeneous

workloads, we execute workloads by grouping them into sets where a set contains one TLB

sensitive and one TLB insensitive application. Each set is executed twice, after fragmenting

the system, to assess the impact of huge page policies on the order of execution. For a TLB

insensitive workload, we execute a lightly loaded Redis server with 1KB-sized 40M keys ser-

vicing 10K requests per-second. Since Redis incurs negligible MMU overhead in this case, an

efficient system is expected to allocate huge pages to co-running TLB-sensitive workloads.

The combined memory footprint of workloads in each set often exceeds 50GB, and therefore,

the default promotion rate of 1.6MB per second is too low to cover the combined memory size

of a set. Therefore, for this experiment, we set the huge page promotion speed to 16MB per

second in all systems (i.e., Linux, Ingens and both the variants of HawkEye).

Figure 3.12 shows the performance speedup over 4KB pages. Figure 3.12a shows the config-

uration when TLB sensitive workloads are launched before Redis while Figure 3.12b shows it

when TLB sensitive workloads are launched after Redis. These two configurations are intended

63

0

15

30

45

60

75

cactusADM tigr Graph500 lbm_s SVM XSBench CG.D

%
 s

p
ee

d
u

p
 o

ve
r

4
K

B
 p

ag
es

Linux Ingens Hawkeye-PMU Hawkeye-G

(a) when these workloads are launched before Redis

0

15

30

45

60

75

cactusADM tigr Graph500 lbm_s SVM XSBench CG.D

%
 s

p
ee

d
u

p
 o

ve
r

4
K

B
 p

ag
es

(b) when these workloads are launched after Redis

Figure 3.12: Performance speedup over baseline pages of TLB sensitive applications when they
are executed alongside a lightly loaded Redis key-value store in different orders.

to cover two different behaviours of Linux because Linux promotes huge pages in the process

launch order. Ingens and HawkEye are agnostic to process creation order.

The impact of execution order is clearly visible for Linux. In Figure 3.12a, Linux with THP

support improves performance over baseline pages by promoting huge pages in TLB sensitive

applications. However, Figure 3.12b, Linux promotes huge pages in Redis resulting in poor

performance for TLB sensitive workloads. While the execution order does not matter in In-

gens, its proportional huge page promotion strategy is biased to allocate huge pages in large

memory workloads (Redis in this case). Further, our client requests randomly selected keys

64

Configuration Details

HawkEye-Host
Two VMs each with 24 vCPUs and 48GB memory.

VM-1 runs Redis. VM-2 runs TLB sensitive workloads.

HawkEye-Guest
Single VM with 48 vCPUs and 80GB memory
running Redis and TLB sensitive workloads

HawkEye-Both
Two VMs each with 24 vCPUs. VM-1 (30GB) runs Redis.
VM-2 (60GB) runs both Redis and TLB sensitive workloads

Table 3.6: Experimental setup for configurations used to evaluate a virtualized system.

which makes the Redis server access all its huge pages uniformly – avoiding idle huge page

penalty in Ingens. Consequently, Ingens promotes most huge pages in Redis leading to sub-

optimal performance of TLB sensitive workloads. In contrast, HawkEye promotes huge pages

based on MMU overhead measurements (HawkEye-PMU) or access-coverage based estimation

of MMU overheads (HawkEye-G). This leads to 15–60% performance improvement over 4KB

pages irrespective of the order of execution.

3.4.3 Performance in virtualized systems

For a virtualized system, we use the KVM hypervisor running with Ubuntu16.04 and fragment

the system prior to running the workloads. Evaluation is presented for three different configu-

rations, i.e., when HawkEye is deployed at the host, guest and both the layers. Each of these

configurations requires running the same set of applications differently. For example, while

considering the effect of applying HawkEye in a single virtual machine, we only need a single

VM running multiple workloads. However, when assessing HawkEye’s benefits at the hypervi-

sor level, we need to deploy two virtual machines on the same physical host. Similarly, when

deploying HawkEye at both the layers, we run two virtual machines with multiple workloads.

Table 3.6 details the configurations we used for this experiment.

Figure 3.13 shows that HawkEye provides 18–90% speedup compared to Linux in virtual

environments. Notice that in some cases (e.g., cg.D), performance improvement is much higher

in a virtualized system compared to bare-metal. This is expected since the MMU overheads are

higher under virtualization – due to nested page table walks involved in servicing TLB misses

of guest applications. This presents higher performance improvement opportunities that are

effectively exploited by HawkEye.

3.4.4 Bloat vs. performance

We next study the relationship between memory bloat and performance; we revisit an experi-

ment similar to the one summarized in Subsection 3.2.1. Ingens authors have also used a similar

65

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

cactusADM tigr mcf Graph500 SVM XSBench CG.D

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Linux HawkEye-Host HawkEye-Guest HawkEye-Both

Figure 3.13: Performance compared to Linux in a virtualized system when HawkEye is applied
at the host, guest and both layers.

Kernel Self-tuning Memory Size Throughput
Linux-4KB No 16.2GB 106.1K
Linux-2MB No 33.2GB 113.8K
Ingens-90% No 16.3GB 106.8K
Ingens-50% No 33.1GB 113.4K
HawkEye (no mem. pressure) Yes 33.2GB 113.6K
HawkEye (mem. pressure) Yes 16.2GB 105.8K

Table 3.7: Memory consumption and throughput of Redis key-value store with different huge
page management systems.

methodology for such an experiment [121]. We populate a Redis instance with 8M (10B key,

4KB value) key-value pairs and then delete 60% randomly selected keys (see Table 3.7). While

Linux-4KB (no THP) is memory efficient (no bloat), its performance is low (7% lower through-

put than Linux-2MB, i.e., with THP). Linux-2MB delivers high performance but consumes

more memory which remains unavailable to the rest of system even when memory pressure

increases. Ingens can be configured to balance the memory vs. performance trade-off. For

example, Ingens-90% (Ingens with 90% utilization threshold) is memory efficient while Ingens-

50% (Ingens with 50% utilization threshold) favors performance and allows more memory bloat.

In either case, it is unable to recover from bloat that may have already been generated (e.g.,

during its aggressive phase).

By automatically switching from aggressive huge page allocations under low memory pres-

sure to a memory conserving strategy at runtime, HawkEye is able to operate in both situations

66

Workload
OS Configuration

Linux
4KB

Linux
2MB

Ingens
90%

HawkEye
4KB

HawkEye
2MB

Redis (45GB) 233 437 192 236 551
SparseHash (36GB) 50.1 17.2 51.5 46.6 10.6
HACC-IO (6GB) 6.5 4.5 6.6 6.5 4.2
JVM Spin-up (36GB) 37.7 18.6 52.7 29.8 1.37
KVM Spin-up (36GB) 40.6 9.7 41.8 30.2 0.70

Table 3.8: Performance implications of asynchronous page zeroing. Values for Redis represent
throughput (higher is better); all other values represent time in seconds (lower is better).

as per the expectation: (1) low MMU overheads with high memory footprint, and (2) low mem-

ory footprint at the expense of high MMU overhead, depending on the state of the system. This

shows that HawkEye can navigate the trade-off space automatically at runtime.

3.4.5 Fast page faults with async page pre-zeroing

Table 3.8 shows the performance of different strategies; for the workloads chosen for these

experiments, their performance depends on the efficiency of the OS page fault handler. We

measure Redis throughput when 2MB-sized values are inserted. SparseHash [25] is a hash-

map library in C++ while HACC-IO [23] is a parallel IO benchmark used with an in-memory file

system. We also measure the spin-up time of two virtual machines: KVM and a Java Virtual

Machine (JVM) where both are configured to allocate all memory during initialization.

Performance benefits of async page pre-zeroing with base pages (HawkEye-4KB) are mod-

est: in this case, the other page fault overheads (apart from zeroing) dominate performance.

However, page-zeroing cost becomes significant with huge pages. Consequently, HawkEye with

huge pages (HawkEye-2MB) improves the performance of Redis and SparseHash by 1.26× and

1.62× over Linux. The spin-up time of virtual machines is purely dominated by page faults.

Hence we observe a dramatic reduction in the spin-up time of VMs with async pre-zeroing of

huge pages: 13.8× and 13.6× over Linux. Notice that without huge pages (only base pages),

this reduction is only 1.34× and 1.26×. All these workloads have high spatial locality of page

faults and hence the Ingens strategy of utilization-based promotion has a negative impact on

performance due to a higher number of page faults.

Async pre-zeroing enables memory sharing in virtualized environments: Finally, we

note that async pre-zeroing inside the physical memory of virtual machines (VMs) enables

memory sharing across VMs: the free memory of a VM returns to the host through pre-

zeroing in the VM and same-page merging at the host. This can have the same net effect as

67

0

0.5

1

1.5

2

2.5

3

PageRank Redis MongoDB CC Memcached SP.D

Node 0 Node 1

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce

Linux Linux+Ballonning HawkEye

Figure 3.14: Performance normalized to the case of no ballooning in an overcommitted virtu-
alized system.

ballooning, as the free memory in a VM gets shared with other VMs. In our experiments with

memory over-committed systems, we have confirmed this behaviour: the overall performance

of an overcommitted system, where the VMs are running HawkEye, matches the performance

achieved through para-virtual interfaces like memory ballooning.

For example, in an experiment involving a mix of latency-sensitive key-value stores and HPC

workloads (see Figure 3.14) with a total peak memory consumption of around 150GB (1.5× of

total memory), HawkEye-G provides 2.3× and 1.42× higher throughput for Redis and MongoDB

along with significant tail latency reduction. For PageRank, performance degrades slightly due

to a higher number of COW page faults due to unnecessary same-page merging.

These results are very close to the results obtained when memory ballooning is enabled on

all VMs. We believe that this is a potential positive of our design and may offer an alternative

method to efficiently manage memory in over-committed systems. It is well-known that balloon-

drivers and other para-virtual interfaces are riddled with compatibility problems [45], and a

fully-virtual solution to this problem would be highly desirable. While our experiments show

early promise in this direction, we leave an extensive evaluation for future work.

3.4.6 Performance overheads of HawkEye

We extensively evaluated HawkEye in non-fragmented systems, and with several workloads that

don’t benefit from huge pages. Our observations suggest that the performance of HawkEye is

68

0

5

10

15

20

25

30

NPB PARSEC Graph500 cactusADM PageRank omnetpp

%
 s

lo
w

d
o

w
n

caching stores non-temporal stores

Figure 3.15: Performance overhead of async pre-zeroing with and without caching instructions.
The first two bars (NPB and Parsec) represent the average of all workloads in the respective
benchmark suite.

very similar to that of Linux or Ingens in these scenarios, confirming that HawkEye’s algorithms

for access-bit tracking, asynchronous huge page promotion and memory de-duplication add

negligible overheads over existing mechanisms in Linux. However, the async pre-zeroing thread

requires special attention as it may become a source of noticeable performance overhead for

certain types of workloads, as discussed next.

Overheads of async pre-zeroing: A primary concern with async pre-zeroing is its potential

detrimental effect due to memory and cache interference (see Subsection 3.3.1). Recall that we

employ memory stores with non-temporal hints to avoid these effects. To measure the worst-

case cache effects of async pre-zeroing, we run our workloads while simultaneously zero-filling

pages on a separate core sharing the same L3 cache (i.e., on the same socket) at a high rate of

0.25 million 4KB pages per second (1GB per second) with and without non-temporal memory

stores. For this experiment, we evaluated more than 60 workloads, including all application from

the SPEC CPU 2006, GAPBS, PARSEC and NAS Parallel Benchmark suites [62, 56, 49, 105].

We report numbers for workloads that experiences the highest interference due to async page

pre-zeroing thread.

Figure 3.15 shows that using non-temporal hints significantly brings down the overhead

of async pre-zeroing (e.g., from 27% to 6% for omnetpp): the remaining overhead is due to

additional memory traffic generated by the pre-zeroing thread. Further we note that this ex-

periment presents a highly-exaggerated behavior of async pre-zeroing on worst-case workloads.

In practice, the zeroing thread is rate-limited (e.g., at most 10k pages per second), and the

69

Workload
MMU

Overhead
Time (seconds)

4KB HawkEye-PMU HawkEye-G

random(4GB) 60% 582 328(1.77×) 413(1.41×)
sequential(4GB) < 1% 517 535 532
Total 1099 863(1.27×) 945(1.16×)

cg.D(16GB) 39% 1952 1202(1.62×) 1450(1.35×)
mg.D(24GB) < 1% 1363 1364 1377
Total 3315 2566(1.29×) 2827(1.17×)

Table 3.9: Comparison between HawkEye-PMU and HawkEye-G for two sets of workloads.
Values in parentheses represent speedup over baseline pages (whereever significant).

expected cache-interference overheads would be proportionally smaller.

3.4.7 Comparison between Hawk-PMU and HawkEye-G

Even though HawkEye-G is based on simple and approximated estimations of TLB contention,

it is reasonably accurate in identifying TLB sensitive processes and memory regions in most

cases. However, HawkEye-PMU performs better than HawkEye-G in some cases. Table 3.9

demonstrates two such examples where four workloads, all with high access-coverage but dif-

ferent MMU overheads, are executed in two sets: each set contains one TLB sensitive and one

TLB insensitive workload.

The 4KB column represents the case where no huge pages are promoted. As discussed earlier

in Subsection 3.2.4, MMU overheads depend on the complex interaction between the hardware

and access pattern. In this case, despite having high access-coverage in their virtual address

regions, sequential and mg.D have negligible MMU overheads (i.e., they are TLB insensitive).

While HawkEye-PMU correctly identifies the process with higher MMU overheads for huge

page allocation, HawkEye-G treats them similarly (due to imprecise estimations) and may

allocate huge pages to the TLB insensitive process. Consequently, HawkEye-PMU performs up

to 36% better than HawkEye-G. Bridging this gap between the two approaches in a hardware

independent manner is an interesting future work.

3.5 Summary

To summarize, transparent huge page management is essential but complex. Effective and

efficient algorithms are required in the OS to automatically balance the trade-offs and provide

performant and stable system behavior. We expose some important subtleties related to huge

page management in existing proposals, and propose a new set of algorithms and policies to

address them in HawkEye.

70

Chapter 4

Leveraging Architectural Support for

All Page Sizes

In Chapter 2 and Chapter 3, we address various memory management challenges involved in

transparent huge page management. Unfortunately, transparent huge pages support only 2MB

pages in current system software wherein high-end servers support 100s of gigabytes to a few

terabytes of physical memory today. We find that for many applications, 2MB huge pages

fail to satisfactorily mitigate the overhead of virtual-to-physical address translation. In this

chapter, we propose multi-level transparent huge pages to benefit from the hardware support

for all page sizes. We show that very large pages (e.g., 1GB pages available on x86 architecture)

are essential for efficiently supporting virtual memory on modern systems.

4.1 Introduction

It is not uncommon for hardware features to require software enablement. Unfortunately, it is

also common to find the micro-architectural resources to remain underutilized due to the lack

of adequate software support. One pays for the underutilized hardware through both – the

runtime cost (e.g., power dissipation), and the design and verification cost. Further, architects

are left in the dark about the extent to which those features are beneficial to applications in

practice, and whether they should continue enhancing them or drop them in future products.

In this chapter, we shed light on one such hardware feature – 1GB pages, that has been

mostly languishing for a decade due to inadequate system software (here, Linux and KVM)

enablement. The x86-64 processors have long supported two large page sizes – 2MB and 1GB,

for over a decade. Intel’s Sandybridge launched in 2010 first supported 1GB pages and had

a four-entry L1 TLB dedicated for 1GB pages in each core [38]. Since then, both large page

71

sizes have found patronage of the processor vendors. Recent Cascade Lake processors support

32-entries in L1 TLB and up to 1536 entries in L2 TLB for 2MB pages. It also has 4 and 16

entries for 1GB pages, in L1 and L2 TLB respectively [37]. The lastest Ice Lake Xeon processors

can hold up to 1024 entries each for both 2MB and 1GB pages, per core, in its L2 TLBs [46].

While hardware vendors continue to enhance TLB capacities for both large page sizes; more

so for 1GB pages in recent times, the system software – operating systems and hypervisors –

continues to focus only on 2MB large pages. For example, Linux’s Transparent Huge Pages

(THP) for application-transparent dynamic allocation of large pages limits itself to only 2MB

pages.

It is thus pertinent to wonder if micro-architects are justified in continuing to invest hard-

ware resources for both 1GB and 2MB large pages. Our first contribution is an empirical

analysis to answer the above question. We quantify the usefulness of 1GB pages, over and

above 2MB pages, to various applications, with and without virtualization. We find that while

most memory-intensive applications benefit from 2MB pages over 4KB, a subset of them speeds

up further with 1GB pages. Besides our own analysis, Google recently reported that nearly

20% of CPU cycles across its data centers are attributed to serving TLB misses, even after

deploying 2MB large pages [106]. Further, the advent of denser non-volatile memory (NVM)

technologies promises to significantly increase the physical memory size [130, 77]. The ability

to efficiently address a large amount of memory is essential to harness its full benefit.

From a theoretical perspective, using the largest page size seems to be an ideal choice.

However, practical constraints often prohibit the use of largest page size. For example, mapping

a virtual address range with a large page requires the virtual address range to be at least as

long as that page size and to be aligned at that page size boundary. Consequently, larger the

page size, lesser is the number of virtual address ranges that are mappable by that page size.

Further, external physical memory fragmentation also makes it difficult to allocate large physical

memory chunks. Therefore, it is desirable to fallback to smaller large pages, if allocating the

largest page size is not possible. Due to these constraints, we find that using multiple large

page sizes in tandem is important.

This chapter details the design and implementation of Trident ∗ – a system that dynam-

ically allocates all available page sizes in x86-64 processors to fully harness the processor’s

TLB resources. Trident does not require prior reservation of physical memory or application

modifications. A key challenge in dynamically allocating 1GB pages is the hardship in ensuring

availability of 1GB contiguous physical memory chunks when needed. As the free physical mem-

ory gets naturally fragmented over time, finding 1GB chunks becomes more difficult than 2MB

∗The name draws from the fact that Trident uses three page sizes (i.e., 1GB, 2MB and 4KB).

72

chunks. Thus, the dynamic allocation of large pages needs to periodically compact physical

memory for making free memory contiguous. However, compaction for 1GB memory requires

significantly more work than 2MB. Moreover, a compaction attempt fails if it encounters even

a single page frame with unmovable contents, e.g., kernel objects like inodes, in a 1GB region

(as discussed in Chapter 2). In short, compaction at the granularity of 1GB pages needs a new

approach.

Trident introduces a smart-compaction technique. We observe that the current approach

of sequential scanning and moving contents of occupied page frames is not scalable to 1GB.

This approach incurs a large amount of avoidable data movement. With smart-compaction,

Trident tracks the number of occupied bytes (i.e., the number of mapped page frames) within

each 1GB physical memory region and uses this information to minimize data movement during

compaction. It also tracks unmovable pages, e.g., Linux’s own data structures, within a 1GB

region to avoid unnecessary data movement. If 1GB pages are still not available, Trident allo-

cates the next best alternative i.e., 2MB pages. These 2MB page mappings are later promoted

to 1GB pages, when suitable.

We also propose an extension of Trident called Tridentpv for virtualized systems. Tridentpv

virtualizes data movement by replacing page-level memory copy operations with page table

pointer manipulations. This copy-less technique makes the promotion of 2MB pages to a 1GB

page significantly faster than the traditional copy-based approach. In this approach, the guest

OS and the hypervisor coordinate to alter the desired guest physical address (gPA) to host

physical address (hPA) mappings.

Overall, Trident speeds up eight memory-intensive applications by 18%, over Linux’s THP,

on average. Tridentpv further improves performance under virtualization, by up to 10%.

In summary, this chapter makes the following contributions:

• We evaluate the usefulness of 1GB pages across various applications, both without and

with virtualization.

• We empirically demonstrate why it is important to deploy all large page sizes, not only

the largest one.

• We created Trident in Linux to dynamically allocate all page sizes available on x86-64

processors to speed up applications with large memory footprint.

• We then propose an optional extension to Trident called Tridentpv that employs paravir-

tualization to enable copy-less 1GB page promotion and compaction in the guest OS.

73

Processor
Intel Xeon Gold 6140 @2.3GHz
Skylake Family with 2 Sockets

Number of cores 18 cores (36 threads) per socket

L1-iTLB
4KB pages, 8-way, 128 entries
2MB pages, fully associative, 8 entries

L1-dTLB
4KB pages, 4-way, 64 entries
2MB pages, 4-way, 32 entries
1GB pages, fully associative, 4 entries

L2 TLB
4KB/2MB pages, 12-way, 1536 entries
1GB pages, 4-way, 16 entries

Cache 32K L1-d, 32K L1-i, 1MB L2, 24MB L3
Main Memory 384GB (192GB per socket)
OS / Hypervisor Ubuntu with Linux kernel version 4.17.3 / KVM

Table 4.1: Specification of the experimental system

Name Threads Memory Description

XSBench 36 117GB
Monte Carlo particle transport algorithm
for nuclear reactors [176]

SVM 36 67.9GB Support Vector Machine, kdd2012 dataset [36]

Graph500 36 63.5GB
Breadth-first-search and single-source-shortest-
path over undirected graphs [177]

CC/BC/PR 36 72GB Graph algorithms from GAPBS [56]

CG.D 36 50GB
Congruent Gradient algorithm from NAS
Parallel Benchmarks [49]

Btree 1 10.5GB Random lookups in a B+tree
GUPS 1 32GB Irregular, memory-intensive microbenchmark [20]
Redis 1 43.6GB An in-memory key-value store [67]
Memcached 36 79GB An in-memory key-value caching store [89]
Canneal 1 32GB Simulated cache-aware annealing from PARSEC [62]

Table 4.2: Specifications of the benchmarks.

4.2 Methodology

Table 4.1 details the configuration of our experimental platform. We evaluate 12 multi-

GB workloads, as detailed in Table 4.2, across various domains such as machine-learning,

graph algorithms, key-value stores, HPC, and micro-benchmarks (GUPS and Btree). We use

Linux’s perf tool [10] to collect relevant micro-architectural events. Our methodology to mea-

sure address translation overhead is similar to the one discussed in Section 3.3, except for

the name of micro-architectural events that changed between Intel Haswell and Intel Sky-

lake processors. Specifically, on Skylake CPUs, we measure the number of cycles spent on

page walks via hardware performance counters DTLB LOAD MISSES.WALK ACTIVE and

DTLB STORE MISSES.WALK ACTIVE [35].

74

To study performance under different states of the system, we used our open source tool to

fragment the physical memory [181]. Fragmentation is measured using Free Memory Fragmen-

tation Index (FMFI [97]) that lies between 0 (no fragmentation) and 1 (full fragmentation).

Our tool fragments physical memory by first caching a large file in operating system page-

cache and then reading it at random offsets for 10 minutes via 24 user threads. Caching file

increases FMFI to 0.95 and random accesses ensure that page reclamation frees memory pages

in non-contiguous chunks.

4.3 How useful are 1GB large pages?

Hardware support for 1GB pages is not free, and the software running on x86 processors pays

the price, irrespective of its use of 1GB pages. For example, modern Intel processors have

4-entry L1 TLB and 16-entry L2 TLB dedicated to 1GB pages. Those four L1 entries for 1GB

pages are accessed on every load and store since the page size is not known in advance. Due

to frequent accesses, L1 TLBs can contribute to a thermal hotspot in processors [155] and can

account for 6% of a processor’s total power [166]. The presence of dedicated TLBs for 1GB

pages adds to the cost. The continued increase in the number of TLB entries for 1GB pages

would worsen it. It is, thus, natural to wonder if applications can benefit from 1GB pages. We

analyze various applications under different execution scenarios to understand the usefulness of

1GB pages.

4.3.1 1GB pages in native execution

Figure 4.1a shows the normalized fraction of execution cycles spent on page walks for each appli-

cation while using different page sizes. The four bars for each application represent walk cycles

with 1○ 4KB pages, 2○ dynamically allocated 2MB pages via THP, 3○ statically pre-allocated

2MB pages via libHugetlbfs, and, 4○ statically pre-allocated 1GB pages via libHugetlbfs. The

fourth bar approximates the performance achievable if the 1GB pages are deployed but not

2MB. Application-transparent dynamic allocation of 1GB pages (i.e., THP like) is not sup-

ported in Linux today.

Note that THP often performs as good as 2MB-libHugetlbfs. For Redis, THP reduces

slightly more walk cycles than libHugetlbfs by also mapping the stack with huge pages (lib-

Hugetlbfs does not map a process’s stack with huge pages). Importantly, THP does not require

pre-allocation of physical memory, nor does it need users to statically decide which program

segment(s) to be mapped with large pages.

Reduction in page walk cycles does not always lead to proportional performance gain on

out-of-order cores. Rather, the speed up depends upon what portions of walk cycles are on the

75

0

0.2

0.4

0.6

0.8

1

N
or

m
al

ize
d

fr
ac

tio
n

of
pa

ge
 w

al
k

cy
cl

es
4KB 2MB-THP 2MB-Hugetlbfs 1GB-Hugetlbfs

(a) Fraction of page-walk cycles

0.5

1

1.5

2

2.5

N
or

m
al

ize
d

pe
rf

or
m

an
ce

4KB 2MB-THP 2MB-Hugetlbfs 1GB-Hugetlbfs

(b) Normalized performance.

Figure 4.1: Performance impact of different page sizes under native execution. Applications in
shade benefit from 1GB pages.

critical path of execution. Figure 4.1b shows the normalized performance. For all workloads,

except Redis and Memcached, we measure performance in terms of their execution time. For

Redis and Memcached, we report performance in terms of throughput.

We observe non-negligible performance improvement (at least 3%) for eight applications

(shaded left part of the figure) with use of 1GB pages over 2MB pages. For example, Canneal

speeds up by 30% over THP. These eight applications’ performance improves by 12.5%, on

average, when 1GB pages are used via libHugetlbfs, relative to THP using 2MB pages. Rest

of the applications witness benefits of using 2MB pages over 4KB, but barely gain any further

with 1GB pages. This is not surprising; the walk cycles were already low with 2MB pages, and

an out-of-order CPU could hide the rest. Henceforth, we thus focus on the first eight (shaded)

76

0

0.2

0.4

0.6

0.8

1

N
or

m
al

ize
d

fr
ac

tio
n

of
pa

ge
 w

al
k

cy
cl

es
4KB+4KB 2MB+2MB 1GB+1GB

(a) Fraction of page-walk cycles

0.5

1

1.5

2

2.5

3

N
or

m
al

ize
d

pe
rf

or
m

an
ce

4KB+4KB 2MB+2MB 1GB+1GB

(b) Normalized performance

Figure 4.2: Performance impact of different page sizes under virtualization. Applications in
shade benefit from 1GB pages.

applications.

We also observe that with THP, applications perform within 0.5% of that with libHugetlbfs

using 2MB pages, even though it does not requires memory pre-allocation or user hints. This

emphasizes the importance of THP for the wide deployment of 2MB pages; something that is

lacking for 1GB pages.

4.3.2 1GB pages under virtualized execution

Two levels of translations under virtualization increase overheads. Each level may use a different

page size. Thus, nine combinations of page sizes are possible. While we explored all, we discuss

only 4KB-4KB, 2MB-2MB, and 1GB-1GB combinations where the first and second terms denote

the page size used in the guest and in the host, respectively. We chose these configurations as

77

they demonstrate the best performance achievable with a given page size.

Figure 4.2a shows the normalized fraction of page walk cycles under three different page

size combinations. We notice significant reductions in walk cycles with 2MB and 1GB pages.

For example, the fraction of walk cycles reduced by 80% for XSBench. Even a couple of 1GB

page agnostic applications (e.g., PR, CC) experience a large reduction in walk cycles. Figure 4.2b

shows the performance under virtualization. We observe that 1GB pages provide a bit more

benefit here. The eight 1GB page sensitive applications speed up by 17.6% over 2MB pages,

on average. The application BC, which did not benefit from 1GB pages under native execution,

becomes slightly sensitive to 1GB pages under virtualization.

4.3.3 Importance of using all large page sizes

In the analysis so far, only one of the large page sizes was deployed as is the norm in today’s

software. However, we find that using all large page sizes together, can bring benefits that are

not achievable using any one of them.

A virtual address range is mappable by a large page only if: 1○ it is at least as long as

that large page, and 2○ the starting address is aligned at the boundary of that page size. All

1GB-mappable address ranges are, thus, mappable by 2MB pages but not vice-versa. When

an application allocates, de-allocates, and re-allocates memory (e.g., Graph500), the virtual

address space gets fragmented. Consequently, an application’s entire address space may not be

mappable by the largest page size.

We empirically find that often GBs of an application’s virtual memory is 2MB-mappable but

not 1GB-mappable. This depends on the application’s memory allocation strategy – whether

the application pre-allocates memory in large chunks (low virtual memory fragmentation) or

incrementally allocate/de-allocate memory over time (high fragmentation in virtual memory).

We measure the size of 1GB-mappable and 2MB-mappable address regions with a kernel

module that periodically scans the virtual address space of an application. Figure 4.3 shows

the size of allocated virtual memory that is mappable with 2MB and 1GB over time for two

representative applications – Graph500 and SVM. The x-axis represents the post-initialization

execution timeline, and the y-axis is the size of allocated virtual memory in GB.

The two lines in each graph show the amount of 1GB and 2MB-mappable memory. We

observe that several GBs of memory is mappable by 2MB pages but not by 1GB (the gap

between the two lines). If only 1GB pages are used, these memory regions have to be mapped

with 4KB pages while wasting 2MB TLB resources.

We then analyzed the importance of mapping the regions that are un-mappable by 1GB

pages, with 2MB. We wrote another module to measure the relative (sampled) TLB miss

78

M
ap

p
ab

le
 m

e
m

o
ry

 (
G

B
)

55

57

59

61

63

65

Execution timeline

1GB 2MB

M
ap

p
ab

le
 m

e
m

o
ry

 (
G

B
)

Execution timeline

1GB 2MB

60

62

64

66

68

70 1GB 2MB

(a) Graph500 (b) SVM

Figure 4.3: Total memory mappable with different page sizes.

R
e

la
ti

ve
 T

LB
m

is
s

fr
e

q
u

e
n

cy

Allocated virtual address regions

1GB-mappable
R

e
la

ti
ve

 T
LB

m
is

s
fr

e
q

u
e

n
cy

Allocated virtual address regions

2MB but not 1GB-mappable

(a) Graph500 (b) SVM

Figure 4.4: Relative TLB-miss frequency.

frequencies to the addresses that are mappable by 2MB but not by 1GB and those by both. We

periodically un-set the access bits in PTEs (4KB) and then track which ones get set again by

the hardware, signifying a TLB miss. Figure 4.4 presents the measurement. The x-axis shows

the allocated virtual address regions, and the y-axis shows the relative TLB miss frequencies

to pages in those regions. We use different colors for addresses that are 2MB-mappable but

1GB-unmappable, and those that are 1GB-mappable. We observe that the 1GB-unmappable

regions witness frequent TLB misses. Particularly for Graph500, the spike in miss frequency

on a relatively small 1GB-unmappable region (about 800MB) stands out (circled). Therefore,

it is important to map these 1GB un-mappable address ranges with 2MB pages to reduce the

number of TLB misses.

Furthermore, it may not always be possible to map a 1GB-mappable address range with a

1GB page due to unavailability of 1GB contiguous physical memory. However, 2MB contiguous

physical memory regions are more easily available. In short, it is important to utilize all available

79

page sizes.

We also studied the usage of 1GB pages to Linux kernel itself. The kernel direct maps

entire physical memory with the largest page size (here, 1GB). Using OS intensive workloads

(e.g., apache web server and filebench [34, 174]), we found that 1GB pages improve kernel’s

performance by 2-3% over 2MB pages.

Summary of observations: (1) A set of niche but important big-memory applications speeds

up with 1GB pages over 2MB pages. In contrast, 2MB pages universally benefit memory-

intensive applications. (2) Application-transparent allocation of 2MB pages brings benefits of

2MB pages without user intervention – a capability that is lacking for 1GB pages. (3) It is

important to utilize all large page sizes not only the largest.

Why the lack of 1GB software enablement? It is natural to wonder why there has not

been an effort for wider enablement of 1GB pages. We hypothesize at least three reasons behind

it: (1) there was no significant quantification of the usefulness of 1GB pages, over and above

2MB pages. The above analysis tries to address that gap, (2) early processor designs had a

limited number of TLB entries for 1GB pages (e.g., four in Sandy Bridge). Therefore, there

was apprehension about the potential thrashing of TLB if 1GB pages were used by applications

with poor locality [147, 54]. However, with newer processors accommodating 1GB pages in L2

TLB, we find no evidence of such thrashing in real-world applications, and (3) finally, with the

advent of denser NVM technologies and five-level page tables, the need for low-overhead address

translation has never been greater. Nevertheless, as the rest of the chapter will demonstrate,

managing 1GB pages in software needs special care, and thus, the bar for software enablement is

non-negligible. However, given the necessity, it is imperative to eschew the software complexity

for wider adoption of 1GB pages.

4.4 Trident: Dynamic allocation of all page sizes

We design and implement Trident in Linux for application-transparent dynamic allocation of

all large page sizes on x86 processors without needing apriori reservation of physical memory.

Trident minimizes TLB misses by mapping most of an application’s address space with 1GB

pages, failing which 2MB, and finally, 4KB pages are used.

Challenges: While the dynamic allocation of 2MB pages is not new, that for 1GB pages

gives rise to new challenges. First, Trident needs to ensure a steady supply of free contiguous

1GB physical memory chunks even in the presence of fragmentation. We found that Linux’s

sequential scanning based memory compaction for creating 2MB chunks is not scalable to 1GB

as it incurs excessive data copying.

Linux tracks only up to 4MB free physical memory chunks. However, the dynamic allocation

80

of 1GB pages would require maintaining free memory up to 1GB granularity. Allocating 1GB

pages during page faults are much slower than that for 2MB or 4KB pages due to the latency

of zeroing entire 1GB memory. Low-latency 1GB page fault is necessary for an aggressive

deployment of 1GB pages. Finally, Trident should map a virtual address range with the largest

large page size deployable at any given time. It should then periodically look for opportunities

to promote address ranges mapped with a smaller large page to a larger one wherever possible.

4.4.1 Design and implementation

At a high-level, Trident modifies four major parts of Linux: (1) it enhances Linux to track up to

1GB free physical memory chunks, (2) it updates the page fault handler to allocate a 1GB page

on a fault when possible and fall back to smaller pages, if needed, (3) Trident extends THP’s

khugepaged daemon thread to promote virtual address ranges to 1GB pages when possible, and

(4) Trident employs smart-compaction technique for a steady supply of 1GB physical memory

chunks at low overhead.

4.4.1.1 Managing 1GB physical memory chunks

Linux’s buddy allocator keeps an array of free lists of physical memory chunks of sizes 4KB

up to 4MB in the power of 2 [84]. When free memory is needed, the buddy allocator provides

a memory chunk from one of its lists based on the request size. Freed physical memory is

returned to the buddy, and coalesced with neighboring free memory chunks to create larger

ones. Unfortunately, the buddy only keeps track of regions up to 4MB. We thus extended it to

include separate lists for tracking up to 1GB memory chunks.

4.4.1.2 Allocating large pages during page fault

Like THP, Trident allocates large pages either (1) during a page fault (e.g., when a process

accesses a virtual address for the first time) or (2) later during attempts to promote an address

range to a large page. We here detail the former. If the faulting virtual address falls in a

1GB-mappable address range, then Trident attempts to map it with a 1GB page. If it fails,

Trident attempts to map the address with a 2MB page, and on failure, with 4KB. If the faulting

address falls in a region that is 2MB-mappable but not 1GB-mappable Trident tries to map it

with 2MB.

Asynchronous zero-fill: A 1GB page fault takes around 400 milli-seconds compared to 450

micro-seconds for a 2MB page. The additional latency is due to zero-filling of 1GB memory

instead of 2MB∗. Similar to HawkEye, we employ asynchronous zero-fill to speed up 1GB faults.

∗Zero-fill ensures application’s leftover data does not leak out.

81

A kernel thread periodically zero-fills free 1GB regions and Trident allocates a zero-filled region,

if available. This makes the average 1GB fault latency comparable to that of a 4KB page.

Table 4.3 and Table 4.4 show the portion of applications’ memory footprints mapped by

1GB and 2MB pages under Trident’s various allocation mechanisms that we will discuss in this

section. The first two data columns in each table show the application name and its memory

footprint. The next set of sub-columns capture the behavior with un-fragmented (Table 4.3)

and fragmented physical memory (Table 4.4). Physical memory is said to be fragmented if

the free memory is scattered in small holes i.e., non-contiguous. Typically, physical memory is

un-fragmented only if the system is freshly booted and/or there is little memory usage. But,

the memory gets quickly fragmented as applications/OS allocate and de-allocate memory.

Table 4.3 shows that in the absence of fragmentation, the page fault handler alone (page-

fault only) can map a large portion of application’s memory with 1GB pages for three out

of eight applications (XSBench, GUPS, Graph500). If an application pre-allocates memory in

large chunks, then the fault handler would often find the faulting address to be in a 1GB-

mappable region, and use 1GB pages. However, Redis and Memcached incrementally allocate

memory while inserting key-value pairs. Thus, the fault handler could map a small portion

of its memory with 1GB pages. SVM, Btree, Canneal also, do not pre-allocate their entire

memory needs.

The behavior is different if physical memory is fragmented. Even if the fault handler finds a

1GB-mappable address range, it is unlikely to find a free 1GB physical memory chunk. Thus,

it often falls back to smaller pages. This is evident from the “page-fault only” sub-columns in

Table 4.4 as only a few 1GB pages are allocated.

4.4.1.3 Large page promotion

If an application does not pre-allocate memory or when physical memory is fragmented, it

becomes important to later re-map (promote) address ranges to larger pages, when possible.

Trident extends THP’s khugepaged thread to promote to both 1GB and 2MB pages.

Figure 4.5 shows a flowchart of Trident’s page promotion algorithm (changes to THP are

shaded). khugepaged first selects a candidate process for page promotion and sequentially scans

its virtual address space. During scanning, Trident looks for 1GB-mappable virtual address

ranges that are mapped with smaller pages. Subsequently, it looks for 2MB-mappable regions

mapped with 4KB pages. If a candidate 1GB-mappable range is found, khugepaged requests

the buddy allocator for a free 1GB physical memory chunk. If a 1GB chunk is unavailable,

khugepaged requests compaction of the physical memory to create one. Trident extends THP’s

compaction functionality to create a 1GB physical memory chunk (will be detailed shortly). If

82

Is free 1GB
frame(s) available

in Buddy?

Request smart compaction
for 1GB phys. mem chunk

Remap R with 1GB page

Is free 2MB
frame(s) available

in Buddy?

Remap R with 2MB page

Has scanning for entire
VA space of P finished?

Select candidate process P for promotion & start
scanning its VA

Consider next region R in P's VA space

Y

Y

Y

N

N

N

N Y

Y

Y

N

Y N

N

Request normal compaction
for 2MB phys. mem chunk

Is 1GB compaction
successful?

Is 2MB compaction
successful?

Is R 1GB-mappable
&& not mapped with

1GB page(s)?

Is R 2MB-mappable
&& mapped with

4KB page(s)?

Figure 4.5: Trident’s large-page promotion algorithm.

the compaction fails, it attempts to map it with 2MB pages (if not already mapped with 2MB).

Trident’s policy of preferring 1GB pages but falling back to 2MB pages makes the most out of

TLB resources.

Table 4.3 shows the number of 1GB and 2MB pages allocated when the above-mentioned

promotion policy is applied along with the page fault handler under unfragmented physical

memory. For example, in the un-fragmented case, khugepaged is able to promote about 39GB

of memory using 1GB pages for Redis, when the fault handler alone failed to allocate even a

single 1GB page. SVM, Canneal also enjoyed many more 1GB pages due to page promotion.

When the physical memory is fragmented, page promotion helps applications get some 1GB

pages, although slightly smaller in number compared to the un-fragmented case (see Table 4.4).

For example, 1GB pages allocated to SVM drop from 65 to 53. This is expected; free 1GB

memory chunks are scarce even after compaction.

Overheads of compaction for 1GB, however, can negate benefits of 1GB pages. Creating

even a single 1GB chunk often requires significant memory copying. Copying data creates

contention in memory controllers and pollutes caches. It also requires scanning large portions

83

Memory
footprint (GB)

Unfragmented physical memory
(all data in GB)

page-fault only
promotion with

normal compaction
promotion with

smart compaction
1GB 2MB 1GB 2MB 1GB 2MB

XSBench 117 114 2.94 116 1.2 116 1.2
GUPS 32 31 1 31 1 31 1
SVM 68.5 54 14.3 65 3.5 65 3.5
Redis 44 0 0.5 39 3.4 39 3.4
Btree 25 0 16.7 16 5.8 16 5.8
Graph500 63.5 59 4.01 60 3.35 60 3.35
Memcached 137 16 121 121 16 121 16
Canneal 32 8 1 30 2 30 2

Table 4.3: Comparison of 1GB and 2MB pages allocated via different mechanisms employed in
Trident (without physical memory fragmentation).

Memory
footprint (GB)

Fragmented physical memory
(all data in GB)

page-fault only
promotion with

normal compaction
promotion with

smart compaction
1GB 2MB 1GB 2MB 1GB 2MB

XSBench 117 6 5.3 79 38.1 80 37.1
GUPS 32 9 2.5 31 1 31 1
SVM 68.5 6 5 53 12.2 54 9.9
Redis 44 0 0 25 10.3 28 14.3
Btree 25 0 11.7 8 12.73 12 8.91
Graph500 63.5 5 5.8 37 24.2 38 23.6
Memcached 137 9 60 12 55 16 60
Canneal 32 6 1 6 21 8 22

Table 4.4: Comparison of 1GB and 2MB pages allocated via different mechanisms employed in
Trident (with physical memory fragmentation).

84

1GB region

Mapped 4KB
page frames

Scanning for “source” of compaction Scanning for “target” of compaction

Current “target” (T) Current “source” (S)

Bytes copied to free the source
region

P
h

ys
ic

al

ad
d

re
ss

 s
p

ac
e

Selected
“source” (S) region

Bytes copied to free the source region

P
h

ys
ic

al

ad
d

re
ss

 s
p

ac
e

Selected
“target” (T) region

(a) Linux’s “normal” compaction

(b) Smart compaction

1GB region

Figure 4.6: Linux’s normal compaction (top) and Trident’s smart-compaction (bottom).

of physical memory. The application threads could get a smaller fraction of CPU cycles as they

can contend with kernel threads performing compaction. In short, it is necessary to reduce the

cost of compaction for 1GB pages.

4.4.2 Smart compaction

We, thus, propose a new compaction technique, called smart-compaction, to reduce the cost of

1GB compaction while creating enough 1GB physical memory chunks. The primary goal is to

reduce the number of bytes copied. This directly reduces the cost of compaction.

Figure 4.6 illustrates the difference between normal compaction as employed in Linux today

and the smart-compaction employed in Trident. Figure 4.6(a) shows the working of normal

compaction. On a compaction request, the khugepaged thread starts sequentially scanning

physical memory from where it left last time it attempted to compact (remembered in “source”

pointer). Scanning starts from the low to high physical addresses. As it finds an occupied

physical page frame (4KB) it copies its contents to a free page frame found by scanning in the

opposite direction from the “target” pointer. This continues until a free memory chunk of the

desired size (e.g., 2MB) is created, or the entire memory is scanned without success.

We observe that this strategy is agnostic to how full or empty a physical memory region

is. Consequently, this leads to unnecessary copying overheads. Let us consider the example

in Figure 4.6(a). The 1GB region starting at address S is mostly occupied and has only 256

free 4KB page frames. Thus, to free that 1GB region, Linux would require copying 999MB of

85

data (512× 512 - 256 4KB pages). Instead, if a mostly free region was freed, then the number

of bytes copied would be much smaller. While such sub-optimal compaction could be fine for

2MB, it is not so for 1GB, as data copying increases with the page size.

Moreover, if the scan encounters a page frame with unmovable contents (e.g., inodes, DMA

buffers), then all copying so far for a region, is wasted (we discussed the effect of unmovable

pages on fragmentation in detail in Chapter 2). A free chunk cannot have any unmovable

contents. The probability of encountering unmovable contents is much more for a 1GB region.

To address these shortcomings, we propose smart-compaction. The key idea is to divide the

physical memory into 1GB regions and select (not scan for) a region with the least number of

occupied page frames for freeing (i.e., the source of copying). Similarly, a region with the most

number of occupied page frames is preferred as the target for copying. This strategy minimizes

data copy. We also track if a given 1GB region contains any unmovable contents. We avoid

selecting regions with unmovable content for freeing (i.e, source). This eliminates unnecessary

data copying in futile compaction attempts.

To implement the above idea, we first introduced two counters for each 1GB physical memory

regions. One counter tracks the number of free page frames, and the other one tracks the number

of unmovable pages within a region. Whenever a page is returned to the buddy allocator (i.e.,

freed), we increment the counter for free frames of the encompassing 1GB region. Further, we

decrement the counter for unmovable pages if the freed page frame(s) contained unmovable

data. Whenever a page frame(s) is allocated from the buddy allocator the free counter for

the encompassing region is decremented. We increment its unmovable page counter if the

allocated page frame(s) would contain unmovable data (e.g., requested for allocating kernel

data structures). Note that a 1GB region can also have a 2MB page allocated within it. We

treat it as 512 base pages for ease of keeping statistics.

As depicted in Figure 4.6, smart-compaction starts by selecting a 1GB region with largest

number of free page frames and without any unmovable pages as the source (S). It then selects

a target region (T) to move the contents of occupied page frames in the source. The region

with the least number of free page frames is selected as the target. It can happen that T may

not have enough free frames to accommodate all of S’s page frames. If so, a region with next

least number of free frames is selected to accommodate the remaining pages (and, so on).

The sub-columns for smart-compaction in Table 4.3 and Table 4.4 show the number of 1GB

and 2MB pages that were allocated under un-fragmented and fragmented physical memory,

respectively. The number of 1GB pages allocated to each application is the same as that

under normal compaction in the un-fragmented case. Under fragmentation, smart-compaction

typically provides even more 1GB pages. This is because smart-compaction always selects a

86

0
15
30
45
60

%
 re

du
ct

io
n

Figure 4.7: Reduction in the number of bytes copied by smart-compaction.

1GB region that is easiest to free, and thus, compaction succeeds more often.

Figure 4.7 shows the percentage reduction in the number of bytes copied with smart-

compaction over normal compaction. This measurement is performed when physical memory is

fragmented as otherwise compaction is unnecessary. We observe that smart-compaction often

reduces the number of bytes copied by up to 85%. This demonstrates that smart-compaction

performs less work to create the same or more number of 1GB chunks. Only for XSBench, the

improvement is less. XSBench uses a large fraction of total memory in the system and thus,

even the ideal compaction algorithm would not be able to avoid data copy under fragmentation.

4.5 Tridentpv: Paravirtualizing Trident

Under virtualization, Trident can be deployed both in the guest OS and in the hypervisor to

bring benefits of dynamic allocation of all page sizes, including 1GB pages, to both the levels

of address translation. We observe that it is possible to further optimize certain guest OS

operations with paravirtualization.

The guest OS copies contents of memory pages to: (1) compact gPAs, and (2) promote

address mapping between gVA and gPA to larger pages. While the cost of copying 4KB pages

is not high, copying 2MB pages in order to compact or promote them to a 1GB page is slow.

We observe that the effect of copying guest physical pages can be mimicked by simply altering

the mapping between corresponding gPAs and hPAs. This copy-less approach quickens both

compaction and 1GB page promotion in the guest but needs paravirtualization. We call this

extension Tridentpv.

For brevity, we explain the idea behind Tridentpv with the help of large page promotion

only (Figure 4.8). Let us assume that two contiguous guest virtual pages, v1 and v2, are

currently mapped to two non-contiguous smaller pages g1 and g3 in guest physical memory

(Figure 4.8(b)). For simplicity, we assume that a large page is twice the size of a small page.

87

v1

hPA

gPA g1 g3

v2

g7 g8

h2 h4 h6 h9

gVA v1

g1 g3

v2

g7 g8

h2 h4 h6 h9

v1 v2

g1 g3 g7 g8

h2 h4 h6 h9

step-1: interchange g1 and g7
mappings at both levels

step-2: interchange g3 and g8
mappings at both levels

v1 v2

g1 g3 g7 g8

h2 h4 h6 h9

v1

g1 g3

v2

g7 g8

h2 h4 h6 h9

step-1: copy g1 to g7 (h2 to h6)step-2: copy g3 to g8 (h4 to h9)

(b) Initial non-contiguous mappings(a) Traditional copy-based promotion (c) Copy-less promotion in Tridentpv

Figure 4.8: Traditional copy-based versus Tridentpv’s copy-less page promotion.

To remap gVA encompassing v1 and v2 with a large page, the guest OS first copies their

content to two contiguous guest physical pages – g7 and g8. It then updates the mapping

between gVA and gPA. This traditional way of promoting large pages by copying contents is

shown in Figure 4.8(a).

Figure 4.8(c) shows Tridentpv’s approach for page promotion without actual copy. Instead

of copying g1 to g7, the hypervisor exchanges the gPA to hPA mappings for g1 and g7. After

the exchange, g1 maps to h6 and g7 maps to h2. Since, h2 contains the data originally mapped

by g1, this is same as copying g1 to g7. Similarly, the hypervisor exchanges the gPA to hPA

mappings for g3 and g8 to create the effect of copying g3 to g8. Later, gVA encompassing v1

and v2 is mapped by the guest with a large page to contiguous gPA encompassing g7 and g8.

The guest OS and the hypervisor need to coordinate for copy-less page promotion and, thus,

the need for paravirtualization. Specifically, the guest OS supplies the hypervisor with a list

of source and target guest physical pages via a hypercall. The hypervisor then updates the

mapping from gPA to hPA in the manner explained above to create the effect of copying guest

physical pages. Besides promotion, Tridentpv uses the same hypercall for compacting guest

physical memory to create 1GB pages in the guest.

While promising, the cost of hypercall (≈ 300ns) to switch between guest and the hypervisors

can outweigh the benefits of copy-less promotion. We thus batch requests for multiple page

mapping exchanges in a single hypercall. Since a 1GB page is promoted via 512 2MB pages,

batch size is known apriori and statically configured. We pre-define two 4KB pages for passing

the list of page addresses to exchange between the guest and the hypervisor. One page contains

source gPA (here, g1 and g3) and the other contains the target gPAs (here, g7 and g8). In

a single hypercall it is thus possible to request exchange for all 512 page addresses. Thus, a

single hypercall is sufficient to promote entire 1GB region in gVA mapped with 2MB pages.

The hypercall returns after switching all the requested pages or logs any failure in the same

shared page used for passing list of pages. On failure, the guest falls back to individually copy

contents of pages.

88

We empirically found that promoting 2MB pages to a 1GB page in the guest takes ≈ 600ms

in the copy-based technique. Without batching, Tridentpv can promote the same in less than

30ms while batching reduces the time to ≈ 500µs. Note that Tridentpv’s copy-less promotion

is less useful for promoting 4KB pages to 2MB since the cost of copying 4KB pages is not

significant. Hence, we employ copy-less promotion and compaction for 1GB pages only.

4.6 Evaluation

Our evaluation answers the following questions: (1) can Trident improve performance of

memory-intensive applications over 2MB transparent huge pages of Linux? (2) how differ-

ent components of Trident contribute to its performance win over Linux THP? (3) how does

Trident perform under virtualization?, and (4) finally, how does Tridentpv impact page promo-

tion/compaction in the guest OS?

4.6.1 Performance evaluation on bare-metal systems

Performance under un-fragmented physical memory: Figure 4.9a shows the performance

of Trident normalized against that of THP (higher is better). For each application, there are

two bars in the cluster corresponding to the two configurations we evaluated. Measurements in

Figure 4.9a were performed with un-fragmented physical memory.

We observe that Trident improves performance over Linux’s THP by 14%, on average and

up to 47% for GUPS. Applications like XSBench, SVM, Btree and Canneal witnessed 4.1%, 11.2%,

15% and 30% performance improvement, respectively. Even if we exclude the micro-benchmark

GUPS, performance improvement is 12%, on average, over THP.

Performance under fragmented physical memory: Arguably, performance analysis under

fragmented physical memory paints a more realistic execution scenario. Figure 4.10a shows the

normalized performance under fragmented physical memory for the same configurations as

before. Trident speeds up applications even more under fragmentation. This is unsurprising

since Trident’s smart compaction adds a further edge here. On average, it improves performance

by 18% over THP and GUPS quickens by over 50%. Even excluding GUPS, the improvement is

13% over THP.

We also measured how often the fragmented physical memory prevents Trident from map-

ping an address range with a 1GB page. Table 4.5 shows the percentage of attempts to allocate

a 1GB page that fails due to fragmentation. The “NA”s under page fault for Redis and Btree

signify that fault handler never attempts to allocate 1GB pages for them due to lack of 1GB-

mappable virtual address ranges during faults. We observe that 71-94% of 1GB page allocations

fail due to lack of contiguous physical memory. Even during promotion, 1GB allocations fail

89

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
N

o
rm

al
iz

e
d

 p
e

rf
o

rm
an

ce
2MB-THP Trident

(a) Normalized performance

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 f

ra
ct

io
n

 o
f

p
ag

e
 w

al
k

cy
cl

e
s

(b) Fraction of page-walk cycles

Figure 4.9: Performance under no fragmentation.

often. This reinforces the need to utilize all large page sizes. Even if the largest page size

cannot be used, a smaller large page (2MB) could be deployed.

Impact on page walk cycles: Figure 4.9b and Figure 4.10b show the normalized fraction

of walk cycles for THP, and Trident under un-fragmented and fragmented physical memory,

respectively. The reductions in the page walk cycles with Trident over THP are significant

– 38-85% and 40-97%, under no fragmentation and fragmentation, respectively. Across all

configurations, the relative speedups largely correspond to relative reductions in walk cycles.

Impact on tail latency: Tail latency is an important metric for interactive applications (e.g.,

90

0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6

N
o

rm
al

iz
e

d
 p

e
rf

o
rm

an
ce 2MB-THP Trident

(a) Normalized performance

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 f

ra
ct

io
n

 o
f

p
ag

e
 w

al
k

cy
cl

e
s

(b) Fraction of page-walk cycles

Figure 4.10: Performance under fragmentation.

Redis, Memcached) that should abide by strict SLAs [121]. Table 4.6 reports 99 percentile

latency of Redis and Memcached under different configurations. Trident does not hurt tail

latency relative to both 4KB and THP even though it employs 1GB pages dynamically. Trident

reduced TLB misses in the critical path and ensured compaction, promotion and zeroing of 1GB

pages happen in background to avoid affecting the tail latency.

91

Page fault Promotion Page fault Promotion
XSBench 94% 32% GUPS 71% 0%
SVM 88% 19% Redis NA 36%
Graph500 91% 38% Btree% NA 25%
Memcached 43% 81% Canneal 12% 92%

Table 4.5: Percentage 1GB memory allocation failures

Redis Memcached
4KB THP Trident 4KB THP Trident

No-fragmentation 47.3 50.3 46.6 1.53 1.52 1.53
Fragmentation 53.3 53.3 52 1.55 1.55 1.54

Table 4.6: Tail latency (ms) for Redis and Memcached

4.6.2 Evaluating Trident’s design components

Two of the key aspects of Trident’s design philosophy are: (1) the use of all three page sizes,

including 1GB pages, and (2) smart-compaction. It is natural to investigate how they contribute

in Trident’s overall performance.

Figure 4.11 teases out the impact of these two factors in Trident’s performance, with and

without fragmentation (subfigures). Specifically, we introduce two new configurations. Trident-

1Gonly denotes the configuration where Trident is disallowed to use 2MB pages. The difference

between Trident-1Gonly and Trident highlights the importance of leveraging all large page

sizes. Trident-NC denotes the configuration where Trident is allowed to use all three page sizes

but barred from employing smart-compaction. Instead, it uses normal compaction available in

Linux. The difference between Trident-NC and Trident shows the direct performance implica-

tions of smart-compaction, beside reducing data movement. Smart compaction enables Trident

to compact fragmented physical memory faster and thus, applications can get 1GB pages sooner

in their execution, aiding performance.

First, we focus on the performance when the memory is un-fragmented (e.g., a freshly booted

system) in Figure 4.11a. We observe that there is a significant performance gap between Trident-

1Gonly and Trident, justifying the need for using all three page sizes. Trident-1Gonly loses

performance even relative to THP for several applications (e.g., Graph500, SVM). In hindsight,

this is expected at this point.

Our analysis in Subsection 4.3.3 revealed that these applications have significant portions

of their virtual memory that is 2MB-mappable but not 1GB-mappable. Further, these portions

also witness a relatively larger number of TLB misses. Trident-1Gonly is forced to map these

92

0.8
0.9
1

1.1
1.2
1.3
1.4
1.5

N
o

rm
al

iz
e

d
 p

e
rf

o
rm

an
ce 2MB-THP Trident-1Gonly Trident-NC Trident

(a) Normalized performance under no fragmentation

0.8
0.9
1

1.1
1.2
1.3
1.4
1.5
1.6

N
o

rm
al

iz
e

d
 p

e
rf

o
rm

an
ce 2MB-THP Trident-1Gonly Trident-NC Trident

(b) Normalized performance under fragmentation

Figure 4.11: Performance analysis of different components of Trident.

1GB-unmappable regions with 4KB pages and thus experiences higher translation overheads

compared to Trident that could deploy 2MB pages. In the process, Trident-1Gonly’s benefits

from using 1GB pages are more than negated by the overheads of mapping frequently accessed

memory with 4KB pages.

Next, we observe no difference in performance between Trident-NC and Trident, i.e., no

impact of smart compaction when the memory is un-fragmented (Figure 4.11a). This is expected

since compaction is not required when the memory is un-fragmented. Figure 4.11b shows

the behavior when the physical memory is fragmented. Here, we see significant performance

improvement with smart compaction for several applications. For example, smart compaction

alone speeds up XSBench by 6%. Similarly, smart compaction is instrumental in improving

performances of SVM, Btree, Graph500, Memcached, and Canneal by 2-5%. Only GUPS and

Redis show no significant performance uplift with smart compaction. In short, the use of all

large page sizes and smart compaction both play major roles in Trident’s performance.

93

Comparison with static allocation: Since Trident is a dynamic page allocation technique,

we compared it against the alternative dynamic approach i.e., THP. However, one may wonder

how Trident compares against static technique of allocating 1GB pages via 1GB-Hugetlbfs.

Unfortunately, 1GB-Hugetlbfs needs prior reservation of contiguous physical memory for

1GB pages. Consequently, it fails when the memory is fragmented, as it often happens in real

execution scenarios. Thus, 1GB-Hugetlbfs can be compared only when the physical memory

is un-fragmented as in a freshly booted system (performance reported in Figure 4.1b). Here,

also, Trident performs 3% better than 1GB-Hugetlbfs, on average, even though Trident does not

require user intervention, recompilation or reservation of the physical memory. This was possible

since Trident could even map the stack portions using large pages, unlike 1GB-Hugetlbfs, and

applications such as GUPS and Redis are sensitive to TLB misses on the stack region. Only

in one application Btree, 1GB-Hugetlbfs performs better than Trident. This is because Btree

allocates virtual memory incrementally over time. Thus, 1GB pages are allocated only during

page promotion by Trident and not during page faults upon first access. In contrast, 1GB-

Hugetlbfs uses 1GB pages irrespective of virtual memory allocation size at the cost of bloating

memory footprint.

4.6.3 Performance under virtualization

We measured the performance of applications running inside a virtual machine with Trident

deployed both at the guest OS and at the hypervisor (KVM). Figure 4.12 shows the speedups,

normalized to THP deployed in the guest OS and KVM (unfragmented physical memory).

Under virtualization, Trident improves performance by 16% on average, over THP. Canneal saw

biggest improvement (50%), but other applications also benefited significantly. For example,

SVM and Graph500 witnessed 6% improvement each.

Performance with Tridentpv: When the gPA is fragmented, the guest OS must compact and

promote pages using THP’s khugepaged thread. However, a significant CPU usage in the guest

OS could mean wasted vCPU time (cost) for a tenant in the cloud. In fact, Netflix reported

how their deployments on Amazon EC2 can get adversely effected by high CPU utilization

due to THP’s threads [99]. We, therefore, evaluate Tridentpv with fragmented gPA but limit

khugepaged’s CPU utilization in the guest to maximum of 10% of a vCPU. This setup helps to

find out whether Tridentpv’s faster copy-less promotion/compaction can be useful to use 1GB

pages.

Figure 4.13 shows the performance of Trident and Tridentpv normalized to THP. Tridentpv

is more effective than Trident for XSBench, GUPS, Memcached, and SVM by 5%, on average

and by up to 10%. We observe that Tridentpv does not always improve performance over

94

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
al

iz
e

d
 p

e
rf

o
rm

an
ce

2MB+2MB-THP Trident+Trident

Figure 4.12: Performance under virtualization.

0.6

0.8

1

1.2

1.4

N
o

rm
al

iz
e

d
 p

e
rf

o
rm

an
ce 2MB+2MB-THP Trident+Trident Trident + Trident

pv pv

Figure 4.13: Tridentpv’s performance under fragmented gPA.

Trident. Recall that Tridentpv’s hypercall-based copy-less approach is quicker than the copy-

based approach only during promotion/compaction of 2MB pages to 1GB pages. Otherwise, the

overhead of the hypercall and that of altering PTEs overshadows the benefits of avoiding copy.

In applications such as BTree, Graph500, Canneal, 4KB pages are often promoted directly

to 1GB pages without needing to go via 2MB pages limiting Tridentpv’s scope for improving

their performance.

Memory bloat: Large pages are well-known to increase memory footprint (bloat) due to

internal fragmentation. Larger the page size more is the bloat. Trident causes bloat in two

95

out of eight workloads. It adds 38GB and 13GB bloat for Memcached and Btree over THP.

We were able to recover the bloat by simply incorporating HawkEye’s technique for dynamic

detection and recovery of bloat by demoting large pages and de-deuplicating zero-filled small

pages (Section 3.3).

4.7 Summary

While OS support for 2MB pages has matured over the years, 1GB pages have received little

attention despite being present in the hardware for a decade. We propose Trident to leverage

architectural support of all page sizes available on x86 processors, while also dealing with the

latency and fragmentation challenges. Our evaluation shows that 1GB pages, in tandem with

2MB pages, significantly speed up several applications. Further, the paravirtualized extension

of Trident, called Tridentpv, can effectively virtualize 1GB pages with copy-less page promo-

tion and compaction. Trident’s 18% performance gain over Linux THP is likely to motivate

researchers to further explore the role of large pages, beyond 2MB.

96

Chapter 5

Mitigating NUMA Effect on Address

Translation

So far in this dissertation, we have discussed how large memory workloads are subject to high

virtual memory overheads. The primary source of this overhead is frequent page table walks

that happen is response to TLB misses. Since page tables reside in memory, a page table walk

may add 100s of CPU cycles in the critical path of execution.

In today’s systems, physical memory is not only increasing in size, it is also becoming

heterogeneous. This induces non-uniform memory accesses in a system whereby some memory

can be accessed much faster than the rest. For example, in multi-socket non-uniform memory

access (NUMA) architectures, physical memory is distributed across multiple CPUs in a way

that each CPU can access its local memory much faster than that of a remote socket. In this

chapter of the dissertation, we discuss how NUMA affects address translation, and propose a

system called vMitosis to address the associated challenges.

5.1 Introduction

Applications suffer non-uniform memory access latency on modern multi-tier memory systems.

As computer systems embrace even more heterogeneity in the memory subsystem, with in-

novations in die-stacked DRAM, high bandwidth memory, more socket counts and multi-chip

module-based designs, the speed differences between local and remote memory continue to

grow and become more complex to reason about [137, 185]. Carefully placing, replicating, and

migrating data among memory devices with variable latency and bandwidth is of paramount

importance to the success of these technologies, and much work remains to be done on these

topics.

97

However, while there is at least prior work on data placement for application pages [40, 66,

78, 111, 157], kernel data structures have been largely ignored from this discussion, primarily due

to their small memory footprint. Consequently, most kernel objects are pinned and unmovable

in typical OS designs [143, 144, 96] (as discussed in detail in Chapter 2). We argue that the

access latency of kernel objects is gaining importance. This chapter focuses on one critical

kernel data structure, the page table, and shows that virtualized NUMA servers must carefully

reason about its placement to enable high performance.

Why page table access latency matters for applications? Page tables are vital to

overall system performance. First, big-memory workloads require frequent DRAM accesses for

page table walks due to high TLB miss rates [42, 92, 61]. As system memory capacities grow to

meet ever-increasing workload data demand, page tables grow proportionally outstripping the

coverage of hardware TLBs. Larger address spaces require additional levels in page tables (e.g.,

Intel’s 5-level page tables). TLB misses under virtualization are already expensive – a 2D page

table walk over guest page tables (henceforth gPT) and extended page tables (henceforth ePT)

requires up to 24 memory accesses that will increase to 35 with 5-level page tables. Finally,

a page table walk does not benefit from memory-level parallelism as it is an inherently serial

process. Therefore, each long DRAM access adds latency to address translation [61].

In the earlier chapters, we have seen that on a single CPU server, frequent page table walks

can add 10-50% execution overhead on important applications. Similar measurement are also

commonly reported in the literature [42, 92, 121]. In this chapter, we show that these overheads

are as high as 3.1× on multi-socket machines due to sub-optimal placement of page tables that

necessitates high latency remote memory accesses during address translation.

Why page table walks require high latency remote memory accesses? Page table

walks require remote memory accesses in two scenarious on virtualized NUMA machines. First,

Thin VMs/workloads (i.e., those fitting within a single NUMA socket) are occasionally mi-

grated across NUMA sockets. Current OSs and hypervisors use migration to improve resource

utilization and performance isolation. Some real-world examples include VMware vSphere

that performs periodic NUMA re-balancing of VMs every two seconds [158], and Linux/KVM

that migrates processes to improve load-balancing and performance under memory sharing on

NUMA systems [178, 74]. While data pages are often migrated along with the threads, page

tables are usually pinned in memory. Consequently, workload/VM migration can make page

tables permanently remote.

The second scenario involves Wide workloads/VMs (i.e., those spanning multiple NUMA

sockets). Wide workloads experience remote page table walks due to a single copy of the

98

page table; note that their virtual-to-physical address translations are requested from multiple

sockets but each page table entry is local to only one of the sockets.

In a separate work Mitosis, I investigated NUMA effects on address translation for native

systems [39]. In contrast, in this chapter, we analyze the effect of NUMA on 2D page tables

and present vMitosis – a system that extends the design principles of Mitosis to virtualized

environments.

vMitosis provides various mechanisms to mitigate NUMA effects on 2D page table walks for

both the use-cases discussed above. Our design applies migration and replication to page tables

to ensure that TLB misses are serviced from local memory. While replication and migration

are well-known NUMA management techniques, virtualization-specific challenges make their

practical realization non-trivial. For instance, a hypervisor may or may not expose the host

platform’s NUMA topology to a VM. We refer to VMs exposed to the host NUMA topology

as NUMA-visible and to VMs not exposed to such information as NUMA-oblivious.

In the NUMA-oblivious configuration, the guest OS is exposed to a flat topology in which all

memory and virtual CPUs (vCPUs) are grouped in a single virtual socket. This configuration

provides resource management flexibility to cloud service providers as NUMA-oblivious VMs

can be freely migrated for maintenance, power management, or better consolidation. Further,

CPUs and memory can be added to or removed from NUMA-oblivious VMs dynamically, ir-

respective of NUMA locality. Most of the VMs on major cloud platforms are available under

this configuration [163].

In contrast, NUMA-visible VMs mirror the host NUMA topology in the guest OS. It al-

lows performance-critical services to tune their performance; some important workloads are

NUMA-aware by design (e.g., databases [122, 172]), while others leverage OS-level optimiza-

tions. NUMA-visible VMs, however, disable hypervisor features such as vCPU hot-plugging,

memory ballooning, and VM migration [119, 138]. This is because the current system software

stack cannot adjust NUMA topology at runtime. Thus, NUMA-visible VMs limit the resource

management capabilities of the hypervisor. However, the choice of a particular configuration is

use-case specific, and hence we handle both configurations in our design.

We implement our design in Linux/KVM and evaluate it on a 4-socket NUMA server with

1.5TB physical memory. We show that vMitosis improves performance by migrating and repli-

cating gPT and ePT. The performance improvement is 1.8 − 3.1× for Thin workloads with

page table migration, and 1.06 − 1.6× for Wide workloads with page table replication. Our

evaluation shows that the page table walks of many applications become less susceptible to the

effect of NUMA while using 2MB pages. However, some applications gain up to 1.47× speedup

with vMitosis over using 2MB pages.

99

System
Guest page tables Extended page tables

Migration Replication Migration Replication
Linux/KVM No No No No
Mitosis via Replication* Yes* No No
vMitosis Yes Yes Yes Yes

Table 5.1: NUMA support for page tables in state-of-the-art systems. (*) Replication is possible
in Mitosis only if the server’s NUMA topology is exposed to the guest OS.

Contributions over Mitosis: Recent proposal Mitosis replicates the page tables on native

systems. vMitosis makes several novel contributions over Mitosis (see Table 5.1). First, Mitosis

requires the physical server’s NUMA topology for replicating the page tables. In bare-metal

servers, the OS extracts platform specifications from ACPI tables. However, the hardware

abstract layer in virtualized systems often hides platform details from the guest OS. Therefore,

Mitosis can replicate gPT only in the NUMA-visible VMs. vMitosis supports both the VM

configurations; it re-uses Mitosis in the NUMA-visible VMs but introduces two novel techniques

for replicating gPT in the NUMA-oblivious VMs (Subsection 5.3.3).

Second, Mitosis does not provide ePT-level optimizations; vMitosis does. Finally, vMitosis

handles page table migration differently from Mitosis. To migrate page tables, Mitosis first

replicates them on the destination socket, configures the system to use the new replica, and

then releases the old replica. In contrast, vMitosis incrementally migrates page tables when the

OS/hypervisor migrates data pages (Subsection 5.3.2). For single-socket workloads, incremental

page table migration of vMitosis provides similar address translation performance as the pre-

replicated page tables of Mitosis but with lower space and runtime overheads.

5.2 Analysis of 2D page table placement

We start by uncovering the sources of remote DRAM accesses during page table walks and

quantifying their impact on performance with a range of memory-intensive applications listed

in Table 5.2. We focus on classes of workloads prevalent in data processing or virtual ma-

chine deployments that experience high TLB miss rates. Further, a non-negligible fraction of

their page table accesses is serviced from DRAM (i.e., miss in the cache hierarchy) due to

their random access patterns. Many other big-memory workloads are known to exhibit such

characteristics [61].

To simplify the discussion, we partition workloads into two groups to separately demonstrate

the two use-cases that lead to remote page table accesses. In the first use-case (referred to as

Thin) a workload executes within a single NUMA socket. In the second use-case (referred to

100

Workload Description
Memcached A multi-threaded in-memory key-value store [89]
Wide 1280GB dataset, 4B keys, 24B queries 100% reads
Thin 300GB dataset, 20GB slab, 9M queries
XSBench Monte Carlo neutron transport compute kernel [176]
Wide 1375GB input, g=2.8M, p=75M
Thin 330GB input, g=0.68M, p=15M
Canneal Simulates routing cost optimization in chip design [62]
Wide 380GB dataset, # 1200M elements
Thin 64GB dataset, # 240M elements
Graph500 Generation, search and validation on large graphs [177]
Wide 1280GB, scale=30, edge=52, 4 iterations
Redis Single-threaded in-memory key-value store [12]
Thin 300GB dataset, 0.6B keys, 100% reads.
GUPS Measures the rate of random in-memory updates [20]
Thin 1 thread, 64 GB input, 1B updates.
BTree Measures index lookup performance [183]
Thin 1 thread, 330GB input, 3.4B keys, 50M lookups.

Table 5.2: Detailed description of the workloads.

as Wide) a scale-out workload spans multiple NUMA sockets using all the CPUs and memory

of the system. Our experimental platform is a 4-socket Intel Xeon based Cascade Lake server

with 96 cores and 1.5TiB of DRAM (see Section 5.4 for more details).

5.2.1 Analysis of thin workloads

Thin workloads are often migrated across NUMA sockets to reduce power consumption, improve

load-balancing, and optimize performance when memory sharing is possible across VMs [178,

74]. We observe that migration of VMs or workloads makes page tables remote. We first

describe how the gPT and ePT become remote, and then quantify the performance impact of

remote page tables.

Consider, for example, a case where the hypervisor migrates a VM from one NUMA socket

to another. In this case, the hypervisor migrates the VM’s memory to the new socket with

NUMA-aware data migration. During such a migration, the hypervisor also migrates the gPT

since gPT pages are like any other guest data pages to a hypervisor. However, hypervisors pin

ePT pages in memory and thus the ePT becomes remote after VM migration.

Alternatively, if a NUMA-visible guest OS migrates one of its workloads to another virtual

NUMA socket, gPT accesses become remote. This happens because kernel data structures,

including page tables, are pinned in typical OS designs today. If ePT were populated by the

101

0
0.5

1
1.5

2
2.5

3
3.5

GUPS BTree Redis XSBench Memcached CannealN
o

rm
a

liz
e

d
 R

u
n

ti
m

e

LL LR RL RR LRI RLI RRI

Figure 5.1: Performance impact of gPT and ePT placement configurations on Thin workloads.
Details of the configurations are discussed in Table 5.3.

Config CPU Data gPT ePT Interference

LL A A A (Local) A (Local) None
LR A A A (Local) B (Remote) None
RL A A B (Remote) A (Local) None
RR A A B (Remote) B (Remote) None
LRI A A A (Local) B (Remote) B (Remote)
RLI A A B (Remote) A (Local) B (Remote)
RRI A A B (Remote) B (Remote) B (Remote)

Table 5.3: CPU, data, gPT and ePT placement for different configurations. A and B represent
two different sockets in the system (e.g., A=0, B=1). “I” represents interference due to a
different workload.

hypervisor on a different NUMA socket prior to workload migration, then ePT also becomes

remote post migration. In long-running cloud instances, it is therefore easy to observe that any

combination of local/remote gPT and ePT can arise depending on how and when workloads

are migrated.

It is important to highlight that ePT may become remote even without migration. ePT

pages are allocated in response to virtualized page-faults that are referred to as ePT violations.

A vCPU raises an ePT violation when a required translation is absent in the ePT. If fixing a

virtualized page-fault requires an ePT page allocation, the hypervisor allocates the page from

the local socket of the vCPU that raised the fault. However, ePT is shared across all vCPUs

of a VM. Thus, it is possible that ePT pages are allocated on one NUMA socket by a guest

workload, but the same translations are later re-used by other guest workloads running on other

sockets.

We quantify the performance impact of remote page tables with seven different configura-

tions listed in Table 5.3: the first character denotes if gPT is allocated from local (L) or one of

the remote (R) sockets while the second character denotes the same for ePT. For these experi-

102

ments, we modify the guest OS (Linux) and the hypervisor (KVM) to control the placement of

gPT and ePT on specific sockets. The workload threads and data pages are always co-located

on the same NUMA socket. This allows us to measure the NUMA effects of page table walks

in isolation.

Figure 5.1 shows the runtime, normalized to the best-case configuration LL in which all

page tables are local. Considering the first four bars for each application, we observe that when

one of the levels of page table (LR, RL) is allocated on a remote socket, the runtime of the

application increases by 1.1 − 1.4×: the impact of remote gPT is almost the same as remote

ePT. As expected, performance drop is higher when gPT and ePT are both remote (RR).

In the experiments so far, we ensured that the remote socket is idle. This enables remote

page table accesses to experience uncontended (optimistic) latency. In a real execution sce-

nario, however, the remote socket may be executing other independent application(s). Memory

accesses from other processes would thus interfere with remote accesses to page tables under

consideration. To measure the impact of contended remote access latency, we add interference

by executing STREAM micro-benchmark [133] on the remote socket. LRI, RLI, and RRI rep-

resent these configurations where ePT, gPT, or both experience contended remote accesses,

respectively. As expected, the impact of remote page table accesses is more pronounced under

these configurations. In the worst case, remote page tables can cause 1.8 - 3.1× slow down.

5.2.2 Analysis of wide workloads

A Wide workload uses resources from two or more NUMA sockets while sharing the same gPT

and ePT. For these workloads, each translation entry is remote to all but one socket in the

system, irrespective of where their page table pages are placed. A single copy of the page table

therefore inevitably leads to remote page table accesses for Wide workloads.

However, unlike Thin workloads, regular data accesses of Wide workloads are interspersed

with their page table walks that makes it hard to isolate the impact of remote gPT/ePT accesses.

Hence, we adopt a different methodology to estimate the severity of remote page table walks

for Wide workloads: we perform an offline 2D page table walk analysis to investigate: (1) what

fraction of virtualized page table walks results in one or more remote DRAM accesses and (2)

how different configurations of virtualization, i.e., NUMA-visible and NUMA-oblivious, impact

page table placement. We discuss the methodology and summarize the observations.

Our analysis focuses on the placement of leaf page table entries (PTEs) since their access

latency dominates address translation performance; higher-level PTEs are more amenable to

caching by the hardware. We run the workloads to completion and dump the gPT and ePT

during their execution periodically once every 5 minutes. We analyze these dumps offline with

103

0

0.2

0.4

0.6

0.8

1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Memcached XSBench Graph500 Canneal

L
e

a
f
P

T
E

 D
is

tr
ib

u
ti
o
n Local-Local Local-Remote Remote-Local Remote-Remote

(a) NUMA-visible virtual instance

0
0.2
0.4
0.6
0.8
1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Memcached XSBench Graph500 Canneal

L
e
a

f
P

T
E

 D
is

tr
ib

u
ti
o

n Local-Local Local-Remote Remote-Local Remote-Remote

(b) NUMA-oblivious virtual instance

Figure 5.2: Analysis of 2D page table walk of Wide workloads on NUMA-visible and NUMA-
oblivious VMs on a 4-socket machine. Bar for each socket (represented by the number) shows
the fraction of 2D page table walks that results in Local-Local, Local-Remote, Remote-Local
or Remote-Remote leaf PTE access in gPT and ePT, when TLB misses are serviced for one of
the threads running on that socket.

a software 2D page table walker. To estimate the local/remote access ratio of page table walks,

we perform address translation for each guest virtual address and record the NUMA socket on

which the corresponding leaf PTEs from gPT and ePT are located. Depending on the placement

of leaf PTEs, each 2D page table walk is classified into one of the four groups: Local-Local,

Local-Remote, Remote-Local and Remote-Remote. The first word denotes if the gPT leaf PTE

is local or remote (for a particular socket), and the latter denotes the same for the ePT. We

repeat this process on all NUMA sockets to estimate the ratio of local/remote DRAM accesses

for 2D page table walks.

Figure 5.2a shows the classification of 2D page table walks in the NUMA-visible configura-

tion. Best translation performance is expected when most page table walks fall into Local-Local

group. However, we find that < 10% page table walks resulted in local memory accesses for

both gPT and ePT. Intuitively, this is not surprising. In a system with N NUMA sockets,

each PTE (in either ePT or gPT) is local to only one and remote to the other N − 1 sockets.

104

Assuming a uniform distribution of PTEs, the probability of a 2D page table walk resulting in

local access in both levels is only 1/N2. Hence, on our 4-socket system, we expect only about

1/42 ≈ 6% page table walks to fall into the Local-Local group. In fact, for a thread running

on any socket, out of the 16 possible combinations of leaf PTE placement in gPT and ePT,

only one configuration is Local-Local, while nine are Remote-Remote, and three in each Local-

Remote and Remote-Local. Thus, more than 50% 2D page table walks result in two remote

memory accesses (one for gPT and ePT each) while more than 35% result in one remote access

due to either gPT or ePT, in expectation.

Note that there can be exceptions to these observations. For example, Canneal’s memory

footprint is only 380GB that is slightly above the capacity of a single NUMA socket on our

server (350GB). Further, it has a single-threaded memory allocation phase. Hence, almost all

memory and page tables were allocated from a single NUMA socket (i.e., Socket-3). In this

case, more than 80% of the total 2D page table walks are Local-Local for threads running on

Socket-3 (25% of the total threads), while almost all page table walks are Remote-Remote for

the rest of the threads. This example also shows that the local (default) memory allocation

policy can skew the placement of page tables. Therefore, some threads may experience poorer

locality than the others.

Figure 5.2b shows the same analysis for NUMA-oblivious VMs. In this case, Local-Local

page table walks are almost non-existent. This is not surprising–the invisibility of NUMA

topology in the guest OS leads to an arbitrary placement of gPT pages. Consequently, even for

a small workload like Canneal, almost all page table walks involve at least one remote DRAM

access. Hence, NUMA-oblivious deployments experience higher address translation overheads.

Summary: In this section, we analyzed how remote page table accesses originate, resulting

in up to 3.1× runtime overhead for Thin workloads. Moreover, we showed that a significant

fraction of page table accesses is remote for Wide workloads that span multiple NUMA sockets.

5.3 vMitosis: Design and Implementation

Our goal is to ensure that memory accesses in 2D page table walks get serviced from local

memory. We achieve this goal by applying two well-known NUMA management techniques –

migration and replication. vMitosis supports three virtual machine configurations: one NUMA-

visible (referred to as NV) and two variants of NUMA-oblivious VMs. We refer to the NUMA-

oblivious variants as NO-P (para-virtualized) and NO-F (fully-virtualized). Table 5.4 provides

a brief overview of NUMA support for page tables under different configurations in current

state-of-the-art systems. Table 5.5 provides the same for vMitosis.

105

Config. State-of-the-art

Page Table
Migration

NV
gPT: replicate and delete old replica in guest [39]
ePT: no migration

NO-P gPT: migrates with data migration in the hypervisor
NO-F ePT: no migration

Page Table
Replication

NV
gPT: replicate in the guest OS [39]
ePT: no replication

NO-P
gPT: no replication
ePT: no replication

NO-F
gPT: no replication
ePT: no replication

Table 5.4: Migration and replication of 2D page tables in current state-of-the-art virtualized sys-
tems. NV: NUMA-visible, NO-P: NUMA-oblivious-paravirtualized, NO-F: NUMA-oblivious-
fully virtualized.

Config. vMitosis

Page
Table
Migration

NV
gPT: migrate incrementally with data migration in the guest OS
ePT: allocated to be co-located with data pages in the hypervisor

NO-P gPT: migrates with data migration in the hypervisor
NO-F ePT: migrate incrementally with data migration in the hypervisor

Page Table
Replication

NV
gPT: replicate in the guest OS [39]
ePT: replicate in the hypervisor

NO-P
gPT: replicate in the guest with hypercalls
ePT: replicate in the hypervisor

NO-F
gPT: replicate in the guest OS with data migration in hypervisor
ePT: replicate in the hypervisor

Table 5.5: Migration and replication of 2D page tables in vMitosis. NV: NUMA-visible, NO-P:
NUMA-oblivious-paravirtualized, NO-F: NUMA-oblivious-fully virtualized.

5.3.1 Design overview

Migration: We propose page table migration for Thin workloads. vMitosis takes a two-fold

approach to enable the migration of gPT and ePT. First, we co-locate page tables with data

pages. Second, we integrate page table migration with the data page migration policies of the

OS/hypervisor. These mechanisms can be enabled independently in each layer.

Replication: We propose page table replication for Wide workloads and VMs. A hypervisor

has direct access to the NUMA topology of the system. Therefore, ePT can be replicated by

extending the Mitosis design [39]. For replicating gPT, the guest OS needs to: (1) know the

number of NUMA sockets the VM is using, (2) allocate gPT replicas on different sockets, and

(3) identify the scheduler mapping of vCPUs to NUMA sockets to load each vCPU with its local

gPT replica. A NUMA-visible guest OS replicates gPT easily since NUMA topology is exposed

106

to the guest OS. However, a NUMA-oblivious guest OS requires additional techniques to fulfill

these requirements. We propose two different techniques to handle this: the first technique

is based on para-virtualization while the second technique is fully-virtualized. We discuss the

trade-offs involved in these techniques in Subsection 5.3.3

5.3.2 Page table migration

General design: We start by allocating page tables from the local NUMA socket of the

workload (similar to current systems) but additionally use a simple policy to determine when

to migrate them. First, we maintain some metadata for each page table page to decide whether

it is placed well or needs to be migrated. Note that a page table is a tree of physical address

pointers wherein page table entries (PTEs) in the internal levels point to the next-level page

table pages while leaf PTEs point to the application data pages. For each page table page,

we maintain an array with an entry for each NUMA socket; each array element represents the

number of valid PTEs that point to its NUMA socket.

Based on this metadata, we say that a page table page is placed well if it is co-located

with most of its children. While we proactively try to allocate page tables close to data, the

system software runtime can migrate workloads and data pages at runtime. To account for

dynamic scheduling activities in the system, we track page table placement by piggybacking on

PTE updates that happen in the page migration path. Since current systems use sophisticated

techniques to co-locate data and threads, PTE updates due to data page migration serve timely

hints to vMitosis to trigger the migration of page tables as soon as they become remote. We

now discuss how gPT and ePT migration works under different modes of virtualization.

5.3.2.1 Page table migration in NV (NUMA-visible) configuration

If a Thin workload is running in a NUMA-visible VM, the guest OS’s NUMA-aware scheduler

may move the workload from one socket to another. As a result, both the gPT and the ePT

may get misplaced and remain remote for the rest of the workload life cycle starting from the

point of migration. For NUMA-visible VMs, we expect that the guest OS employs automatic

NUMA balancing to co-locate the data and threads of its workloads. In this case, the guest OS

will migrate data pages to the new socket but not the gPT.

We leverage the fact that leaf PTEs in gPT get updated when the guest OS migrates

application data pages. vMitosis tracks these migrations and updates the counter values in

the corresponding page table pages. As soon as most of the PTEs in a leaf gPT page point

to a remote socket, vMitosis notices the misplacement of the page and migrates it. Hence,

incremental data migration in vMitosis automatically triggers the migration of leaf gPT pages

107

first. Further, the migration of leaf gPT pages results in updated counter values for the internal

(higher) level gPT pages that in turn triggers their migration. This way, page table migration

is automatically propagated from the leaf level to the root of the gPT tree.

ePT migration works similarly in the hypervisor. However, optimizing ePT placement

requires an additional consideration. Note that a single vCPU may allocate the entire memory

for its VM, e.g., when the VM boots with pre-allocated memory or a single guest thread

initializes all the memory. Similar to current hypervisors, vMitosis allocates ePT pages on the

local socket of the vCPU that requests memory. For a Wide VM, all ePT pages may therefore

get consolidated on a single socket while data pages are distributed across multiple sockets. In

these cases, the guest OS can migrate data pages at runtime to improve memory access locality.

However, NUMA migrations of the guest OS may not be visible to the hypervisor. For example,

a guest OS’s data page migration does not trigger an ePT violation if the ePT entries of both

the old and new data pages are already allocated. The invisibility of guest NUMA migrations

can therefore lead to misplaced ePT. To handle such cases, we occasionally invoke automatic

page table migration to verify the co-location invariant and migrate misplaced ePT pages.

5.3.2.2 Page table migration in NUMA-oblivious NO-P and NO-F configurations

Under NUMA-oblivious deployments, we expect the hypervisor to co-locate the threads and

data pages of guest applications. Note that when the hypervisor migrates guest data pages, gPT

is automatically migrated since a gPT page is like a regular VM data page for the hypervisor.

Therefore, we do not need to consider a separate gPT migration mechanism for NUMA-oblivious

VMs. However, ePT becomes remote if the hypervisor migrates guest applications or the entire

VM. We use the same technique here as discussed above: migration of guest physical pages

trigger ePT migration in vMitosis from the leaf level to the top of the ePT tree. This way

vMitosis achieves local page walks for both ePT and gPT in all configurations.

5.3.2.3 Linux/KVM implementation

We implement ePT and gPT migration in Linux/KVM as an extension to the pre-existing

automatic NUMA balancing technique called AutoNUMA [73]. AutoNUMA periodically inval-

idates PTEs in a process’s page table to induce minor page faults. These faults act as a hint

for the OS to assess whether a remote socket dominates memory accesses for a data page. In

addition to allocating page tables from the local socket during workload initialization, we rely

on AutoNUMA-driven data page migration to drive the migration of page tables.

In our implementation, we avoid interfering with regular page table updates by implement-

ing page table migration as another pass on top of AutoNUMA. To do so, we first wait for

AutoNUMA to complete fixing the placement of data pages in a specific virtual address space

108

range, and then scan the corresponding page tables to update the counters and migrate the page

tables if necessary. This allows vMitosis to benefit from AutoNUMA’s dynamic rate limiting

heuristics that adjust the frequency of scanning based on the rate of data page migration. In

the normal case where no page table migration is needed, we rarely scan page tables causing

no interference in the common case.

To ensure correctness while migrating a gPT page, we acquire a write lock on the per-process

mmap sem semaphore. This avoids consistency issues in the presence of split page table locks in

Linux where each page table page can be locked independently by different threads [80]. We

acquire and release the lock for each gPT page migration separately to avoid latency issues.

However, we do not expect this to be a performance issue as page table migration is an infrequent

operation and migrating a page table page takes only a few microseconds. In KVM, all ePT

updates are already protected by a per-VM spin lock. Therefore, vMitosis does not require

additional synchronization for ePT migration.

5.3.3 Page table replication

General design: We enable local address translation for Wide workloads by replicating their

page tables. Recently proposed Mitosis replicates page tables for native execution on NUMA

machines. However, two levels of the page tables and the hardware abstraction layer of the

hypervisor make it non-trivial to extend Mitosis to virtualized environments. This subsec-

tion introduces our replication support in vMitosis which builds on the Mitosis design while

highlighting the subtle differences and challenges involved in extending such a design.

We extend Mitosis to replicate ePT in both NUMA-visible and NUMA-oblivious configu-

rations. In the NUMA-visible configuration, we also re-use Mitosis to replicate gPT. However,

the gPT replication technique of Mitosis is insufficient for NUMA-oblivious VMs since the guest

OS has no visibility into the NUMA topology. We propose two new techniques to replicate gPT

for such VMs. The first technique replicates gPT via para-virtualization. In this approach, the

guest OS relies on the hypervisor to identify NUMA topology, vCPU to NUMA socket map-

ping, and allocate gPT replicas. The second technique is fully-virtualized wherein the guest

OS replicates gPT by discovering the NUMA topology and vCPU scheduling information with

a micro-benchmark. Additionally, it leverages the commonly-used “local” memory allocation

policy of the hypervisor [175] to allocate gPT replicas from different sockets.

5.3.3.1 ePT Replication

The design and implementation of ePT replication is common across all VM configurations.

We introduce the following four components in the hypervisor for replicating ePT:

109

1. Allocating ePT replicas: We extend the ePT violation handler to allocate replicas on

all NUMA sockets eagerly, i.e., each ePT page allocation is followed by the allocation of

its replicas. To allocate ePT replicas from the desired sockets, we introduce a per-socket

“page-cache” that reserves some pages on each socket and uses them to allocate ePT pages.

When the free memory pool in a NUMA socket falls below a certain threshold (e.g., 10%),

the page-cache reclaims memory from the socket by migrating some data pages to another

socket or by swapping them out.

2. Ensuring translation coherence: The updates to ePT are managed solely by the hyper-

visor. ePT updates occur when a VM allocates a new data page or due to various hypervisor

actions like page sharing, live migration, working set detection, etc. These updates are per-

formed by the hypervisor on the ePT. We eagerly update all replicas when an ePT entry is

modified, followed by a TLB flush to ensure translation coherence for the entire VM.

3. Assigning local ePT replica: Each virtual CPU (vCPU) of a VM is managed by the

KVM hypervisor as a user-level thread that can be scheduled on any physical CPU (pCPU).

When a vCPU is scheduled, we provide it with the local ePT replica to ensure that ePT

page table walks are performed entirely within its local NUMA socket.

4. Preserving the semantics of access and dirty bits: ePT is referenced by the hardware

on a TLB miss. Recent architectures have also introduced access and dirty bits on ePT [107].

The hardware page table walker sets these bits when a physical page is accessed or modified;

the hypervisor is not involved in their updates. For these bits, ePT replicas may be incon-

sistent since a hardware page table walker will set them only on its local replica. However,

this inconsistency does not compromise correctness. Hypervisors use these bits in various

contexts e.g., to decide whether a page needs to be flushed before it can be released. To

ensure correctness, we OR the value of these bits on all replicas when the hypervisor queries

them; the return value is the same as it would be if all replicas were always consistent.

Similarly, if the hypervisor clears the access or dirty bits, we reset them on all the replicas.

With these four components, derived from the native Mitosis design and adapted to virtu-

alized systems, we enable ePT replication for virtual machines. Next, we discuss how gPT is

replicated under different virtualization scenarios.

5.3.3.2 gPT replication in NV (NUMA-visible) configuration

This is the simplest case for replicating gPT since the physical topology is exposed to the guest

OS. We modify the guest OS to reserve the page cache, allocate gPT replicas on different sockets

110

and program each thread’s page table base register with its local replica. We leverage the open

source version of Mitosis [154] to replicate gPT in this configuration.

5.3.3.3 gPT replication in NO-P (NUMA-oblivious paravirtualized) configuration

In this configuration, the NUMA topology is not visible inside the VM. The guest OS requires

two main pieces of information to replicate gPT: (1) how many sockets are being used by the

VM and (2) how vCPUs are scheduled on these sockets. This information is required to identify

how many replicas the guest OS should allocate and configure each vCPU with its local replica.

We use para-virtualization to resolve both these challenges where the guest OS relies on explicit

hypervisor support as discussed below:

1. Identifying NUMA socket ID of each vCPU: The guest OS queries the physical socket

ID from the hypervisor for all its vCPUs. This serves two purposes: (1) it enables the guest

OS to know how many physical sockets it is using. This way, the guest OS knows how many

gPT replicas it needs to allocate. (2) it allows the guest OS to schedule its CPU cores with

the local gPT replica.

2. Allocating gPT page caches on specific sockets: The guest OS populates a per-socket

“page cache” based on the number of sockets that the VM is currently using on the host.

To ensure local allocation of each page cache on the physical server, the guest OS requests

the hypervisor to pin these page cache pages onto their intended sockets.

This design allows the hypervisor to perform NUMA-aware scheduling and change the

vCPU to pCPU mapping, as per the requirement of dynamic optimizations. To adapt to

the hypervisor-level scheduling changes, the guest OS queries the vCPU to socket ID mapping

at regular intervals and updates the vCPU to gPT replica mapping as required.

5.3.3.4 gPT replication in NO-F (NUMA-oblivious fully virtualized) configuration

The goal is to replicate gPT entirely within the guest OS without support from the hypervi-

sor and para-virtualization. We achieve this by exploiting two common properties of NUMA

systems: (1) two hardware threads from different sockets exhibit higher communication la-

tency compared to threads within the same socket [65, 110]. The is because cross NUMA

socket communication is subject to the interconnect latency between different CPUs, and (2)

OS/hypervisors commonly use “local” memory allocation policy wherein memory is preferably

allocated from the same NUMA socket where the requesting application thread is running [175].

This helps in minimizing high latency remote memory accesses for data pages.

111

0 1 2 3 4 5 6 7 8 9 10 11
0 - 125 125 126 50 125 126 126 55 125 125 126
1 - - 125 126 126 50 125 125 125 52 126 125
2 - - - 126 125 126 62 126 125 125 55 125
3 - - - - 125 125 126 50 125 126 125 55
4 - - - - - 125 125 126 62 126 125 125
5 - - - - - - 125 126 125 55 125 126
6 - - - - - - - 126 126 126 50 125
7 - - - - - - - - 125 126 125 52

Table 5.6: Time to transfer a cache line (in ns) between different vCPU pairs. Bold underlined
entries represent vCPU pairs wherein both vCPUs are scheduled on the same NUMA socket.
The table is shown partially from the 192x192 matrix we profiled on our system.

We exploit the first property to construct virtual NUMA groups within the guest OS using

a micro-benchmark that measures the pair-wise cache-line transfer latency between all vCPUs.

Based on these measurements, vMitosis assigns vCPUs to virtual NUMA groups such that the

communication latency is low between any two vCPUs in the same group and high for any two

vCPUs from different groups.

For example, consider Table 5.6 that shows the cost of transferring a cache line between

different vCPU pairs on our experimental platform. Given this cost metric, vMitosis forms

four groups of vCPUs (0,4,8), (1,5,9), (2,6,10), and (3,7,11) where each tuple represents a

virtual NUMA group. These virtual groups have a one-to-one correspondence with our physical

server topology, and hence, we identify the affinity groups of the vCPUs without relying on

para-virtualization. In general, we find that the virtual NUMA groups constructed by our

micro-benchmark always mirror the host topology, even under interference from other VMs

and workloads.

We next leverage the hypervisor’s local memory allocation policy to allocate gPT replicas

from the local physical socket of each virtual NUMA group. For this, we select one vCPU

from each group in the guest to allocate memory for its page-cache immediately upon boot.

The vCPU allocates and accesses its page-cache to enforce page allocation in the hypervisor

via ePT violations. From this point, each virtual NUMA group references its replica, and gPT

replication works as discussed before. When a gPT page is released, we add it back to its

original page-cache pool.

In this approach, it is possible that a replica page could not be allocated locally e.g., due to

unavailability of free memory on the local socket. For these cases, we expect the hypervisor’s

NUMA-balancing technique to migrate misplaced replica pages to their expected sockets. Note

that different NUMA groups reference different copies of gPT replicas. Therefore, all accesses

112

for each replica page originate from the same socket. It makes it easier for the hypervisor

to identify which of the gPT replica pages are misplaced (if any) and migrate them. In our

evaluation, we show that the overheads of misplaced gPT replicas are moderate even in the

worst case (when all gPT accesses are remote) because most gPT accesses are already remote

in existing systems.

Note that replicating gPT via NO-P or NO-F involves a trade-off regarding the ease of

deployment and performance guarantees. NO-P guarantees high performance by providing

explicit hypervisor support to the guest OS for satisfying all the requirements of gPT replication.

However, cross-layer communication makes NO-P harder to deploy. NO-F is easy to deploy

but may lead to suboptimal performance in rare cases when non-local replicas get assigned

to vCPUs. Our evaluation shows that NO-F and NO-P provide similar performance in the

common case (see Subsection 5.4.2.2).

5.3.3.5 Linux/KVM implementation

KVM maintains a descriptor to store the attributes of each ePT page. We use the original

ePT pages as the “master” copy and store references to the corresponding replicas within their

descriptors. We then intercept writes to the master ePT and propagate them to all the replicas

within the same acquisition of a per-VM spin lock to ensure eager consistency. If a vCPU is

rescheduled to a different NUMA socket, we invalidate the old ePT for the vCPU and assign a

new replica based on its new socket ID.

We replicate gPT using the open source implementation of Mitosis in the NV configuration.

We also use Mitosis as the core gPT replication engine for NUMA-oblivious NO-P and NO-F

configurations but augment it with two different guest modules. In NO-P, the guest kernel

module issues hypercalls to the hypervisor to determine the physical socket ID of all its vCPUs

and allocate local gPT replica for each vCPU group. Under the NO-F configuration, the guest

module builds the necessary virtual NUMA groups with a micro-benchmark and allocates one

replica page-cache for each group. These modules periodically update their vCPU to NUMA

group mappings to adapt to hypervisor-level scheduling changes.

5.3.4 Deploying vMitosis

vMitosis supports per-process/per-VM migration and replication of page tables for unmodified

applications. Users can enable or disable page table migration at runtime (enabled system-

wide, by default), while replication requires explicit selection by the user with numactl NUMA

control policy of Linux.

It is important to highlight that the choice of migration or replication depends on the

113

classification of a workload as either Thin (migration) or Wide (replication). In this chapter, we

have primarily focused on building various “mechanisms” to cover real-world scenarios that lead

to remote memory accesses for page table walks. Hence, we used simple heuristics (e.g., number

of requested CPUs and memory size) and user inputs (e.g., numactl) to classify VMs/processes

as Thin or Wide. We leave investigating more sophisticated policies as future work, e.g., based

on the cpuset allocation, hardware performance counters etc.

5.4 Evaluation

We evaluate vMitosis on real hardware with a selection of memory-intensive workloads. We

conduct page table migration experiments for Thin (Subsection 5.4.1) and page table replication

experiments for Wide workloads (Subsection 5.4.2). We further explore the trade-offs between

replication and migration (Subsection 5.4.3). In all cases, we exclude workload initialization

time from performance measurements.

Evaluation platform: We conduct all measurements on an Intel 4x24x2 Xeon Gold 6252

(Cascade Lake) server with 1.5TiB DDR4 physical memory in total, divided equally among

four NUMA sockets. The processor runs at a base frequency of 2.10 GHz with a per-socket

35.75MB L3 cache. It contains a private two-level TLB per core with 64 and 32 L1 entries for

4KB and 2MB sized pages, and a unified L2 TLB with 1536 entries. We enable hyperthreading

and disable turboboost.

Software configuration: We use Linux v4.17-vMitosis as both the host and the guest

OS [154], and KVM as the hypervisor. We pin vCPUs to pCPUs, use numactl to select

the memory allocation policy, and selectively enable/disable automatic NUMA-balancing and

transparent huge pages (THP) depending on the configuration being tested. When enabled,

THP is used in both–the guest OS and the hypervisor.

Virtual machines: We configure two VMs using libvirt for the KVM hypervisor, each

with 192 vCPUs and 1.4TiB of DRAM. NUMA-visible VM divides the DRAM and vCPUs into

four virtual sockets with a one-to-one mapping between physical and virtual sockets. NUMA-

oblivious VM exports the entire server as a single socket machine.

5.4.1 Evaluation with page table migration

This subsection focuses on Thin workloads that fit into one NUMA socket. We show that

vMitosis mitigates the effects of remote page table walks when the workload is migrated and

scheduled on another NUMA socket.

114

Configuration gPT ePT
LL Local Local
RRI Remote+Interference Remote+Interference

RRI+e Remote+Interference Migrated
RRI+g Migrated Remote+Interference
RRI+M Migrated Migrated

0

0.5

1

1.5

2

2.5

3

3.5

GUPS
(260s)

BTree
(417s)

Redis
(391s)

XSBench
(193s)

Memcached
(368s)

Canneal
(256s)

N
o

rm
al

iz
ed

 R
u

n
ti

m
e LL RRI RRI+e RRI+g RRI+M

3
.1

x

2
.5

4
x

1
.9

7
x

1
.7

6
x

2
.4

1
x

2
.2

6
x

(a) Using 4KB pages

0

0.5

1

1.5

2

2.5

3

3.5

GUPS
(79s)

BTree
(NA)

Redis
(282s)

XSBench
(117s)

Memcached
(NA)

Canneal
(165s)

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

1
.0

2
x

1
.4

7
x

1
.0

3
x

1
.3

5
x

(b) Using 2MB pages

0

0.5

1

1.5

2

2.5

3

3.5

GUPS
(196s)

BTree
(311s)

Redis
(353s)

XSBench
(211s)

Memcached
(392s)

Canneal
(175s)

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

2
.4

x

1
.8

3
x

1
.5

9
x

1
.8

0
x

2
.3

x

2
.3

x

(c) Using 2MB pages + fragmentation in guest OS

Figure 5.3: Workload performance with and without ePT and gPT migration. Bars are nor-
malized to base case (LL). Absolute runtime for the base case in brackets. Numbers at the top
show speedup with vMitosis over the worst-case setting (RRI).

115

Evaluation methodology: We select the NUMA-visible VM configuration to explore various

page table configurations for these experiments. In the NUMA-visible case, NUMA controls

reside in the guest OS and the hypervisor maintains a 1:1 mapping between the virtual and

physical NUMA sockets. We focus on the worst-case situation that occurs when the guest OS

migrates one of its workloads; in this case, gPT and ePT both become remote as discussed

in Subsection 5.2.1.

We profile the execution for five configurations listed in the table at the top of Figure 5.3.

LL represents the best-case performance with local page tables. RRI represents Linux/KVM

where ePT and gPT are both remote after workload migration. We measure vMitosis in three

configurations; RRI+e replicates only ePT, RRI+g replicates only gPT while RRI+M replicates

both ePT and gPT. Additionally, we execute workloads with 4KB and 2MB pages.

Description of results: We show the benchmark results in Figure 5.3. The base case (LL)

has both the ePT and gPT on the local NUMA socket. With 4KB pages, all workloads expe-

rience performance loss when either ePT or gPT is remote. The worst-case occurs when both

are remote, resulting in a slowdown of 1.8 − 3.1×. For all six workloads, vMitosis eliminates

the overhead of remote page table walks by migrating both levels of the page tables (RRI+M),

achieving the same performance as the best case. The effect of ePT or gPT migration is similar

as RRI+e and RRI+g contribute roughly half to the overall speedup.

With THP enabled, the difference between the base case and the remote configurations

is less visible due to fewer TLB misses with 2MB pages. Therefore, vMitosis provides a rela-

tively modest speedup, except for Redis and Canneal that gain 1.47× and 1.35× improvement.

Memcached and BTree result in out-of-memory (OOM) due to the well-known internal fragmen-

tation problem with 2MB pages that leads to memory bloat (discussed in Section 5.5).

We also measure performance with THP where the guest OS’s physical memory is frag-

mented. Fragmentation is well-known to limit 2MB page allocations, increasing TLB pressure.

To fragment the guest OS’s memory, we first warm up the page cache by reading two large

files into memory. The total size of these files exceeds memory capacity of the socket where

applications execute. We then access random offsets within these files for 20 minutes. This

process randomizes the guest OS’s LRU-based page reclamation lists. When the application

allocates memory, the guest OS invokes its page replacement algorithm to evict inactive pages.

Since we accessed files at random offsets, the eviction usually frees up non-contiguous blocks of

memory, forcing the allocator to use 4KB pages. However, background services for compacting

memory and promoting 4KB pages into 2MB pages remain active.

With THP enabled and fragmented guest OS, vMitosis recovers the performance that was

lost due to the lack of 2MB page allocations, resulting in up to 2.4× speedup. Memcached and

116

BTree were able to complete their execution in this case since fewer 2MB pages were allocated

due to fragmentation. Both these applications also observed significant performance gain with

vMitosis. Note that host physical memory is not fragmented and ePT maps guest physical to

host physical memory with 2MB pages. Therefore, the speed up here is lower than when both

layers use 4KB pages.

Summary: vMitosis effectively mitigates the slowdown caused by remote page table walks by

integrating the migration of ePT and gPT with that of data pages. Overall, vMitosis provides

up to 3.1× speedup without THP. With THP, we gain up to 2.4× and 1.47× speedup with and

without fragmentation.

5.4.2 Evaluation with page table replication

We evaluate the performance benefits of ePT and gPT replication in two settings: NUMA-

visible and NUMA-oblivious.

5.4.2.1 Page table replication in a NUMA-visible scenario

We first measure the speedup due to gPT and ePT replication by giving guest OS access to the

NUMA topology.

Evaluation methodology: We set up the guest OS to replicate gPT in our NUMA-visible

VM and the hypervisor to replicate ePT. We execute Wide workloads (shown in Table 5.2)

inside the VM. We use local memory allocation on the host to match guest memory mappings

to the host’s NUMA mappings, and pin each vCPU to a pCPU of the respective socket. We use

different memory allocation policies in the guest and run each configuration with and without

vMitosis. Moreover, we run each workload with and without THP.

The table on top of Figure 5.4 shows the configurations. F represents workload execution

with first-touch (local) memory allocation in the guest OS while FA represents auto page mi-

gration enabled on top of first-touch memory allocation. Configuration I represents interleaved

memory allocation wherein pages (including gPT and ePT pages) are allocated from all four

sockets in round-robin. The vMitosis counterpart for each of these configurations is repre-

sented with the suffix +M. For example, configuration F+M represents replicated gPT and

ePT, combined with the first-touch page allocation policy for data pages.

Description of results: Figure 5.4a shows the relative runtime of workload execution under

six configurations, normalized to the base case (F). We show the absolute runtime (in seconds)

for the base case below the workload name. Replicating both gPT and ePT with vMitosis

provides 1.06 − 1.6× speedup without any workload changes. Performance improvements due

to vMitosis are generally higher in configurations with local memory allocation (i.e., F and

117

Configuration Data Allocation ePT gPT
F First-touch First-touch First-touch

F+M First-touch Replicated Replicated
FA First-touch + Balancing First-touch First-touch

FA+M First-touch + Balancing Replicated Replicated
I Interleaved Interleaved Interleaved

I+M Interleaved Replicated Replicated

0

0.25

0.5

0.75

1

1.25

1.5

F

F
+
M F
A

F
A
+
M

I

I+
M F

F
+
M F
A

F
A
+
M

I

I+
M F

F
+
M F
A

F
A
+
M

I

I+
M F

F
+
M F
A

F
A
+
M

I

I+
M

Memcached
(602s)

XSBench
(777s)

Graph500
(930s)

Canneal
(4504s)

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

1
.1
9
x

1
.2
0
x

1
.2
2
x

1
.6
1
x

1
.3
6
x

1
.1
7
x 1
.3
3
x

1
.0
6
x

1
.1
x 1
.2
7
x

1
.1
3
x

1
.1
6
x

(a) Using 4KB pages

0

0.25

0.5

0.75

1

1.25

1.5

F

F
+

M F
A

F
A

+
M

I

I+
M F

F
+

M F
A

F
A

+
M

I

I+
M F

F
+

M F
A

F
A

+
M

I

I+
M

Memcached
(NA)

XSBench
(616s)

Graph500
(580s)

Canneal
(2549s)

N
o
rm

a
liz

e
d
 R

u
n
ti
m

e

0
.9

8
x

1
.0

2
x

1
.0

1
x

0
.9

8
x

1
.0

1
x

0
.9

7
x 1.12x

1
.0

5
x

1
.0

1
x

(b) Using 2MB pages

Figure 5.4: NUMA-visible: Workload performance with and without vMitosis, normalized to
the base case (F). Runtime (in seconds) for the base case are in brackets. Numbers at the top
show speedup with vMitosis over the corresponding memory allocation policy of Linux/KVM.

FA) – this is because local allocation leads to skewed page table walk traffic in Linux/KVM.

Even with a balanced distribution of page tables (configuration I), replicating page tables via

vMitosis provides more than 1.10× speedup for all workloads.

We run the same workloads with THP enabled and show the results in Figure 5.4b. All

workloads benefit from THP except Memcached that resulted in OOM due to memory bloat

118

created by transparent huge pages. Further, we have found that replicating the ePT alone does

not make much of a difference when THP is enabled. Except for Canneal, improvements due

to vMitosis are negligible. Canneal gains 1.12× and 1.05× speedup in first-touch with NUMA

balancing and interleaved policies, respectively.

5.4.2.2 Page table replication in a NUMA-oblivious scenario

We next evaluate how vMitosis can improve performance when the NUMA topology is not

exposed to the guest OS.

Evaluation methodology: For these experiments, we use Wide workloads in three different

configurations as listed in the table on top of Figure 5.5 using the first-touch allocation policy

at the hypervisor and pinning vCPUs to pCPUs to ensure stable performance. These settings

are consistent with standard virtualization practices [175].

A NUMA-oblivious VM views the system as a single virtual socket. Therefore, only the local

memory allocation policy is possible in the guest OS, unlike the NUMA-visible scenario. The

base case (OF) represents vanilla Linux/KVM with first-touch memory allocation. We evaluate

the two vMitosis variants against the baseline. Configurations OF+M(pv) and OF+M(fv)

represent our para-virtualized and fully virtualized solutions, respectively. We enable ePT

replication in both the variants.

Description of results: Results are shown in Figure 5.5, normalized to the base case OF

with its runtime beneath the workload name. All configurations benefit from vMitosis: ePT

and gPT replication provides performance improvements of 1.19− 1.4× over the baseline using

4KB pages. Enabling THP, we see similar performance characteristics for all configurations.

Due to fewer TLB misses and reduced cache footprint of page tables, we see a statistically

insignificant speedup of up to 1% with vMitosis.

The performance of both vMitosis variants is roughly similar in all cases. This is an impor-

tant result highlighting that our fully virtualized approach of replicating gPT entirely within

the guest OS can deliver similar performance as the para-virtualization based approach. Hence,

in common cases, a guest OS integrated with vMitosis can experience the same performance

benefits of gPT replication as if they were replicated with explicit hypervisor support.

Impact of misplaced gPT replicas (4KB pages): We acknowledge that our fully-

virtualized approach may fail to achieve the best-case performance in some cases. While a

vMitosis enabled guest OS can always discover the NUMA mappings of its vCPU’s, the place-

ment of gPT replica pages depends on the state of the hypervisor. Therefore, if the hypervisor

fails to allocate gPT replicas from a vCPU’s local socket (e.g., if free memory is not available),

119

Configuration Data Allocation ePT gPT
OF First-touch First-touch First-touch

OF+M(pv) First-touch Replicated Replicated with para-virtualization
OF+M(fv) First-touch Replicated Replicated with full virtualization

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 R
u

n
ti

m
e OF OF+M(pv) OF+M(fv)

1
.2

x
1

.2
x

1
.2

4
x

1
.2

5
x

1
.4

x
1

.4
x 1
.1

9
x

1
.2

x

Memcached XSBench Graph500 Canneal Memcached XSBench Graph500 Canneal

(605s) (730s) (999s) (4269s) (NA) (622s) (592s) (2508s)

Using 4KB Pages Using 2MB Pages

Figure 5.5: NUMA-oblivious: Workload performance, normalized to the base case (OF). Run-
time for the base case in brackets. Numbers on top of the bars show speedup with vMitosis
wherever significant. Configuration details are listed in the table at the top.

vMitosis may assign non-local gPT pages to some vCPUs. While we expect these cases to be

rare, we still evaluate it to measure the worst-case overhead of non-local gPT replicas in our

fully-virtualized approach OF+M(fv).

For these experiments, we artificially create a situation that mimics misplaced gPT replicas

by configuring each thread’s page table base register cr3 to point to one of the remote replicas.

For example, we configure threads running on socket-0 to use socket-1’s copy of the gPT and so

on. This leads to 100% remote memory accesses for gPT. We then evaluate performance with

and without replicating ePT.

Disabling ePT replication isolates the impact of misplaced gPT replicas. Our experiments

showed a moderate 2%, 4%, and 5% slowdown over Linux/KVM for Graph500, XSBench, and

Memcached, respectively. These results are in-line with our expectations: we do not expect

high overheads since non-replicated page tables in Linux/KVM already result in about 75%

remote gPT accesses on a 4-socket system, on average. If ePT replication is enabled, vMitosis

outperforms Linux/KVM even if all gPT replicas are misplaced. This is also expected since

vMitosis reduces the overall number of remote page walk accesses in this case – misplaced gPT

adds 25% remote accesses but replicated ePT eliminates 75% remote accesses, on average.

120

Summary: We have shown that vMitosis improves application performance by replicating

gPT and ePT in both NUMA-visible and NUMA-oblivious configurations. While 2MB pages

perform well even without replicated page tables, they are susceptible to out-of-memory errors

due to internal fragmentation.

5.4.3 Replication vs. migration of page tables

In Subsection 5.4.1, we profiled execution in a static setting by allocating data and page tables

on different sockets and later migrating page tables close to data. However, scheduling policies

of the OS/hypervisor have a dynamic effect on the placement of page tables. In this subsection,

we demonstrate a live migration example using Memcached as a representative workload. We

demonstrate live migration in both the guest OS and the hypervisor, and compare the effect of

page table replication and migration in both these cases.

Evaluation methodology: For this evaluation, we select a Thin Memcached instance with a

30GB dataset and execute it in both NUMA-oblivious and NUMA-visible configurations. We

initialize the cache and start querying the key-value store while measuring the throughput over

time. After about five minutes, we migrate Memcached from Socket-0 to Socket-1. At this point,

all memory accesses become remote for a few minutes until NUMA balancing starts migrating

data pages.

Description of results: We first consider the NUMA-visible case (Figure 5.6a) and evaluate

five configurations. Configurations RRI, RRI+e, RRI+g and RRIM+M are similar to the ones

used in Subsection 5.4.1. Ideal-Replication represents pre-replicated page tables wherein page

table accesses are always local.

Initially, all five configurations operate at 35M operations per second, and then they ex-

perience a sharp drop in the throughput after Memcached gets migrated to another NUMA

socket. In vanilla Linux/KVM (RRI) even after NUMA balancing has co-located the dataset of

Memcached, the throughput is restored to only about 50% of its pre-migration level. When ei-

ther ePT or gPT migration is enabled via vMitosis (RRI+e or RRI+g), we experience a similar

pattern initially but reach 65% of the initial throughput in a few minutes. The best outcome is

obtained with the migration of both ePT and gPT (RRI+M), where 100% of the throughput

is regained. While the initial drop is less dramatic when using ideal pre-replicated page tables,

our page table migration technique also quickly restores the throughput by migrating page ta-

bles with data pages. In the long run, vMitosis achieves the same behavior as ideal page table

replication.

In the NUMA-oblivious case, the hypervisor-level NUMA balancing migrates guest data

121

Configuration ePT
RI Remote + Interference

RI+M Migrated
Ideal-Replication Replicated before migration

0

5

10

15

20

25

30

35

40

Th
ro

u
gh

p
u

t
(m

ill
io

n
 o

p
s/

se
c)

Time (minutes)

RRI RRI+e RRI+g RRI+M Ideal-Replication

0 4 8 12 16 20

migration point

(a) Workload migration by a NUMA-visible guest OS

0

5

10

15

20

25

30

35

40

Th
ro

u
gh

p
u

t
(m

ill
io

n
 o

p
s/

se
c)

Time (minutes)

RI RI+M Ideal-Replication

0 4 8 12 16 20

migration point

(b) VM migration by KVM hypervisor

Figure 5.6: Throughput of a Thin Memcached instance before, during and after migration. In
the NUMA-visible case (a), the guest OS migrates Memcached. In the NUMA-oblivious case
(b), the hypervisor migrates Memcached’s VM.

122

pages as well as the gPT when it migrates the VM. Hence, there are only three configurations

in Figure 5.6b. Configuration RI represents the baseline Linux/KVM system where ePT is

remote after VM migration. We evaluate vMitosis in two configuration where RI+M represents

vMitosis with ePT migration and Ideal-Replication represents pre-replicated ePT.

Since gPT is automatically migrated by the hypervisor, the loss in Memcached’s through-

put in Linux/KVM in Figure 5.6b (RI) is lesser than the loss in the NUMA-visible case of

Figure 5.6a (RRI): RI experiences ≈ 35% drop (local gPT, remote ePT) compared to 50% of

RRI (remote gPT, remote ePT). However, this is still a significant performance loss considering

that VM migration has completed from the system point of view. vMitosis restores the full

performance by migrating ePT (RI+M); this behavior is also close to an ideal ePT replication

scenario.

5.4.4 Memory and runtime overhead of vMitosis

We quantify the runtime overhead of our implementation with a micro-benchmark that invokes

common memory management related system calls mmap, mprotect, and munmap – similar to

the methodology discussed in Mitosis [39]. The micro-benchmark repeatedly invokes these sys-

tem calls with different virtual memory region sizes. We measure throughput as the number of

PTEs updated per second for each system call when invoked at 4KB, 4MB and 4GB granular-

ity on three system configurations: Linux/KVM, vMitosis with migration, and vMitosis with

replication. In vMitosis configurations, replication or migration of ePT and gPT is enabled

simultaneously. Table 5.7 shows our measurements. We make the following observations based

on these results.

First, the exact overhead of replication depends on the specifics of a particular system call.

For example, the cost of mmap and munmap system calls is dominated by the time taken to

allocate and free pages, respectively. In contrast, mprotect only updates certain page table bit,

and therefore experiences significantly higher overhead due to replication. The overhead also

depends on the size of the memory region. For smaller virtual memory area per system call,

the overhead of context switching dominates that of updating page table replicas. Hence, the

overheads are low in the 4KB case but more pronounced in the 4MB and 4GB cases.

Secondly, Linux/KVM and vMitosis (in its default migration mode) both maintain a single

copy of the page tables. Hence, their throughput is roughly similar in all cases. Thin workloads,

therefore, do not experience runtime overhead in vMitosis before or after migration or when

they are never migrated across sockets. This is an important benefit that justifies the value

of integrating page table migration with that of data pages. In contrast, replication-based

page table migration (as in Mitosis) involves expensive page table updates. Furthermore, the

123

Syscall Size Linux/KVM
vMitosis

(migration)
vMitosis

(replication)

mmap
4KB 0.44 0.44 (1.0×) 0.40 (0.91×)
4MB 1.10 1.10 (1.0×) 1.08 (0.98×)
4GB 1.11 1.10 (1.0×) 1.08 (0.98×)

mprotect
4KB 0.82 0.83 (1.01×) 0.69 (0.84×)
4MB 30.88 31.34 (1.01×) 9.05 (0.29×)
4GB 31.82 31.81 (1.0×) 8.97 (0.28×)

munmap
4KB 0.34 0.34 (1.0×) 0.30 (0.88×)
4MB 6.40 6.60 (1.03×) 4.92 (0.75×)
4GB 6.62 6.64 (1.0×) 4.75 (0.72×)

Table 5.7: Throughput (measured as million PTEs updated per second) of different system
calls when invoked with different virtual memory region sizes using 4KB mappings. Numbers
in parentheses represent throughput normalized to Linux/KVM.

overhead of replication increases linearly with the number of replicas.

Third, through separate profiling of these overheads for ePT and gPT, we observe that

the cost of updating gPT replicas dominates the overall replication overheads. In general,

ePT updates are infrequent – ePT is updated when memory pages are first allocated to a VM

which is a one time operation in the common case. Furthermore, the cost of updating ePT

is dominated by VM-exits. Hence, ePT replication contributes only a marginal overhead in

Table 5.7.

Finally, Table 5.8 shows the space overhead of vMitosis with different replication factors for

a representative 1.5TiB workload using 4KB pages. For a typical densely populated address

space, page tables consume a small fraction of overall memory (i.e., 0.2% – since a 4KB page

table page maps 2MB of address space). Therefore, each 2D page table replica adds 0.4%

memory overhead on virtualized systems, resulting in an overall 1.2% memory overhead on our

four-socket system. With 2MB large pages, the space overhead of 4-way replication reduces to

36MB i.e., a negligible 0.003% of workload memory footprint. Overall, these space overheads

are moderate compared to the performance benefits of vMitosis.

replicas ePT gPT Total
1 3GB 3GB 6GB (0.4%)
2 6GB 6GB 12GB (0.8%)
4 12GB 12GB 24GB (1.6%)

Table 5.8: Memory footprint of 2D page tables for a 1.5TB workload using 4KB pages with
different replication factors. Numbers in parentheses represent memory consumption of page
tables as a fraction of workload size.

124

5.4.5 Summary of results

We have shown that vMitosis fully mitigates the overheads of remote page table walks providing

1.8 − 3.1× speedup for Thin workloads. It improves the performance of Wide workloads by

1.06−1.61× in the NUMA-visible case and by 1.19−1.4× in the NUMA-oblivious case. We have

also shown that vMitosis can restore the performance of the Memcached server to its initial state

within a few minutes of VM/workload migration. In a few cases, vMitosis provides significant

improvement over Linux THP.

5.5 Discussion

5.5.1 Huge (large) pages

A major part of this dissertation is dedicated to showing that the overheads of address transla-

tion can be reduced to a great extent with efficient huge page management. Since huge pages

minimize TLB misses, and avoid many DRAM accesses with shorter page tables, they can

automatically minimize the effect of NUMA on address translation. However, integrating huge

pages into existing systems has been extremely challenging [72, 75]. Some of the performance

issues with huge pages appear due to inadequate OS-based huge page management algorithms

as we have discussed in Chapter 2 and Chapter 3. This dissertation also takes several steps to

remedy these issues. However, there are some issues that are fundamentally inherent in huge

pages and no practical solutions are available to handle the associated challenges. Therefore,

huge pages are no panacea and solutions like vMitosis are still desirable. We discuss three major

challenges that make huge pages unsuitable for some applications or hard to use in practice.

First, huge pages negatively affect NUMA access locality for application data pages. With

baseline 4KB pages, the OS can make fine-grained data placement/migration decisions based on

application memory access patterns. This becomes difficult as the page size increases e.g., due

to false sharing between threads executing on different NUMA sockets. These issues have been

discussed in the academic literature [94] as well in the Linux kernel community [75]. A common

solution to avoid NUMA locality issues is to fallback to smaller pages. This solution avoids

NUMA penalty for data pages but brings page table access locality into play – the theme of this

chapter. Therefore, vMitosis is useful when huge pages have a negative impact on application

data page locality.

Second, huge pages risk increasing the memory footprint due to internal fragmentation in

the virtual address space or unused baseline pages in an application. We discussed this issue

in detail in Chapter 3. In this chapter also, we have shown that THP can cause out-of-memory

(OOM) error for Memcached and BTree due to extra memory overhead. In HawkEye, we propose

125

a technique that can recover memory bloat from huge pages by de-duplicating unused baseline

pages. Unfortunately, this solution also relies on breaking huge pages into regular 4KB pages.

Third, external physical memory fragmentation can prevent huge page allocations. In these

cases, an OS falls back to using regular smaller pages. As discussed above and throughout this

chapter, using small pages increases TLB misses and often necessitates high latency remote

memory accesses for page table walks. Therefore, vMitosis is useful for long-running systems

and when applications are susceptible to memory bloat with huge pages.

5.5.2 Shadow page tables

Under virtualization, address translation overheads can be reduced by replacing 2D page tables

with shadow page tables. In shadow paging, hypervisor-managed shadow page tables translate

guest virtual addresses directly to host physical addresses [182]. This reduces the maximium

number of memory references involved in an address translation to only four (similar to native

systems), as compared to 24 with two-level paging. However, shadow page tables must be kept

consistent with guest page tables; for this, a typical hypervisor write protects gPT pages and

applies gPT modifications to its shadow page tables. This process involves an expensive VM

exit on every gPT update. Shadow page tables, therefore, involve a complicated trade-off i.e.,

optimizing hardware page table walks at the expense of high software memory management

overheads.

Research has shown that TLB-intensive workloads that allocate memory once can benefit

from shadow-paging [92]. vMitosis supports migration and replication of shadow page tables

in KVM. Our experiences with shadow page tables have been mixed. In the best-case (when

page table updates are infrequent), shadow paging combined with migration and replication

with vMitosis improves performance by up to 2× over 2D page tables, at the expense of 2−6×
higher initialization time. In the worst-case, shadow paging degraded performance by more than

5×. We also observed extreme overheads due to guest kernel’s services that update page tables

(e.g., some of the workloads did not complete even in 24 hours when we enabled AutoNUMA

in the guest OS). In general, shadow paging combined with the techniques of vMitosis could

be useful for workloads that involve little kernel activities (e.g., HPC applications). The use of

shadow paging in its current form does not seem fruitful, and consequently some hypervisors

have abandoned it. However, techniques that exploit the best of shadow and extended paging

have been explored in the literature [48, 92]; combined with vMitosis, such techniques could

prove to be more powerful on heterogeneous memory systems.

126

5.6 Summary

In this chapter, we highlight that efficient placement of kernel objects is becoming important in

NUMA systems. Our detailed analysis on a real platform shows that remote DRAM accesses due

to misplaced guest and extended page-tables cause up to 3.1× slowdown. We present vMitosis

– a system design to explicitly manage 2D page-tables in different virtualized environments.

vMitosis leverages well-known replication and migration techniques and effectively eliminates

NUMA effects on 2D page-table walks.

127

Chapter 6

Related work

Techniques to mitigate the overhead of virtual-to-physical address translation, and other mem-

ory management challenges discussed in this dissertation have been extensively studied in the

literature. In this chapter, we discuss some important related works and highlight the key

difference between prior work and our contributions.

Hardware techniques for efficient virtual memory: Hardware optimizations focus on

reducing TLB misses and accelerating page table walks. Multiple page sizes supported by

today’s commercial CPUs provide both the benefits: fewer TLB misses and faster page table

walks than regular 4KB pages [26]. Multi-level TLBs are used to balance the benefits of higher

TLB coverage with the lookup latency of large caching structures [59]. Further, page walk caches

are used to avoid accessing physical memory for higher levels of the page tables [51]. These

hardware optimizations have found their way in commercial hardware available today. However,

prior research and our work in this dissertation, have shown that despite these optimizations,

large scale systems are still susceptible to the overhead of TLB misses.

Basu et. al. proposed direct segments to completely avoid TLB-miss processing cost through

a special segmentation hardware [55]. In this scheme, processors use special registers to map

some large contiguous virtual memory regions into physical memory using a BASE+OFFSET

arithmetic. Direct segments require that each virtual address region using the segmentation

technique is mapped contiguously in the physical address space. The same approach was

later extended by Gandhi et. al. to virtualized environments [91], and by Haria et. al. to

heterogeneous system architectures [104]. The primary focus of these solutions was to identify

the necessary hardware support to use segmentation-based approach for address translation.

All of these systems rely on contiguous physical memory – in many cases beyond the the size

of conventional large pages. Therefore, these schemes are also susceptible to the effects of

128

fragmentation and solutions discussed in this dissertation are useful for such techniques.

For virtualized environments, shadow paging is another alternative to improve address trans-

lation performance [182]. With shadow paging, the hardware translates guest virtual address

directly into host physical address, similar to native systems. This, however, requires the hy-

pervisor to maintain a separate page table and keep it in sync with the guest page tables. For

workloads that frequently update the page table, shadow paging incurs prohibitively high cost

due to frequent VM exits. Gandhi et. al. proposed agile paging [92] to identify the best paging

scheme at runtime e.g., agile paging uses nested page tables for address translation when page

tables are updated frequently to avoid paying the cost of VM exits on each update. In other

phases, it can use shadow paging to accelerate address translation.

OS-level challenges of memory fragmentation have also been considered in hardware designs:

CoLT or Coalesced-Large-reach TLBs [149] were proposed to increase TLB reach using base

pages, based on the observation that OSs naturally provide contiguous mappings at smaller

granularity. CoLT uses the regular page size but encodes contiguity hints in the spare bits of

page tables. This way, it effectively achieves higher TLB coverage but without increasing the

page size. This approach was further extended to page walk caches and huge pages [60, 76, 150].

In fact, techniques to support huge pages in non-contiguous physical memory have also been

proposed [88].

POM-TLB services a TLB miss using a single memory lookup with a large in-memory

TLB, and further leverages regular data caches to speed up address translation [159]. SpecTLB

speculatively provides address translation on a TLB miss by guessing virtual-to-physical address

mappings [52]. ASAP prefetches translations to reduce page walk latency to that of a single

memory lookup [132]. It first orders page table pages to match that of the virtual memory pages

and then uses a BASE+OFFSET arithmetic that directly indexes into the page tables. Tailored

page sizes use whatever contiguity OS can afford to allocate [103]. Park et. al. proposed to use

large pages to allocate page table entries to reduce the height of the page table [148]. Various

application specific and machine learning techniques have also been explored for accelerating

address translation [42, 131].

One major limitation of current address translation schemes is that they inherently make

page table walks a pointer chasing operation through multiple layers of the radix-based page

table tree. Therefore, multiple memory requests involved in a page table walk cannot benefit

from hardware support for memory-level parallelism. Hashing-based page tables avoid this bot-

tleneck of radix tree and have been proposed as an alternate address translation structure [187].

Skarlatos et. al. recently demonstrated the benefits of using elastic cuckoo hash table as the

page table data structure [165]. Elastic cuckoo page tables convert pointer-chasing operations

129

into fully parallel lookups, support efficient page table resizing and memory sharing across

different processes.

Other hardware optimizations include: redundant memory mappings (RMMs) proposed by

Gandhi et. al. [115], and OS/architecture co-design approach proposed by Alverti et. al. [44].

These solutions have many conceptual similarities. In the former, the hardware uses an addi-

tional translation structure called range TLB for virtual-to-physical address translation, albeit

at an arbitrary granularity – not using fixed size pages. Range TLB is much smaller in size

than regular TLBs and are populated by walking the in-memory range tables. Range TLB

is looked up in parallel with regular TLBs by the hardware. In the latter approach, a simi-

lar contiguity-aware paging scheme is employed to speed up address translation in virtualized

environments.

Software techniques for efficient virtual memory: Early work discussed multiple ways

of supporting huge pages in HP-UX OS [171]. Navarro et al. implemented support for mul-

tiple page sizes with reservation-based huge page allocations and contiguity-aware page recla-

mation [139]. FreeBSD’s huge page management is largely influenced by this seminal work.

In Chapter 3, we discussed the pitfalls associated with the reservation-based approach in de-

tail. Similar issues have been highlighted in a recent work [121].

Ingens is perhaps the most closely related work to the contributions of this dissertation.

Ingens proposes to mix the aggressive large page allocation scheme of Linux with the conserva-

tive approach of FreeBSD. This way, Ingens improves THP support in terms of fairness, bloat

and latency by tracking huge page utilization and access frequency of pages. We quantitatively

compare our fine-grained huge page management solution HawkEye with Ingens in Chapter 3.

Recent proposal Quicksilver uses hybrid strategies across different stages in the lifetime of a

large page [190]. Specifically, it employs aggressive allocation, hybrid preparation, relaxed

mapping creation, on-demand mapping destruction and preemptive deallocation to improve

performance and lower latency and memory bloat.

As discussed in Chapter 3 of this dissertation, some part of the address space may be subject

to relatively higher TLB miss overheads in some applications. To maximize the benefits of huge

pages, compiler or application hints can also be used to assist the OS in prioritizing huge page

mappings for such regions [41, 129]. Linux already provides an interface to communicate such

preferences through the madvise system call [6]. In this dissertation, we also show that user-

space hints are not necessarily required. Using the page table access bits, the OS can estimate

the profitability of huge pages and allocate memory contiguity accordingly. This way, our

approach is inline with the concept of transparent huge pages.

Carrefour-LP [94] highlighted that large pages can increases remote memory accesses in

130

NUMA systems. The authors highlight the effect of page size on load balancing across multiple

memory controllers, one per NUMA node. The authors use hardware performance counters to

detect when large pages affect data access locality and load balancing, and propose disabling

large pages if they are predicted to harm performance. Guo et al. proposed proactively breaking

huge pages to improve memory efficiency via page sharing in virtualized environments [101].

Ingens and SmartMD [121, 100] provide alternative fine-grained mechanisms to moderate the

effect of large pages on page sharing while still trying to achieve high address translation

performance.

Translation Ranger proposed a new OS service that actively creates contiguity in physical

memory [186]. This functionality, however, requires application modifications and is unsuit-

able for applications that incrementally allocate memory. Some part of this work provided a

preliminary patch set to extend Linux’s THP support to 1GB pages [184]. Their approach,

however, always prefer promoting address regions to 1GB pages through a background service

– even if contiguous memory is available during page faults. Consequently, it incurs unneces-

sary data movement even when physical memory is un-fragmented or moderately fragmented.

In large-memory systems, this could amount to migrating terabytes of data to allocate 1GB

pages. Further, the inability to immediately deploy 1GB pages, even when it was possible,

leaves significant performance on the table. In contrast, our proposal Trident employs 1GB

pages aggressively without requiring application modifications as discussed in Chapter 4.

Techniques to deal with memory fragmentation: Memory allocation and reclamation

decisions guided by the size or expected lifetime of objects form the basis for many copying or

generational garbage collectors in user space [125, 79, 170, 83, 50, 169]. Recent work on C++

memory allocator uses a pure lifetime prediction algorithm to minimize internal fragmentation

in application virtual address space, especially to alleviate memory overhead while using large

pages [128]. Unfortunately, such solutions are not well-suited for mitigating kernel-level frag-

mentation because the kernel has to deal with unmovable pages. Moreover, application specific

knowledge (e.g., object lifetime) is, in general, not available to OSs [160, 96].

S. Kim et al. [116] proposed proactive anti-fragmentation that allocates contiguous memory

to each process from the beginning. This way, contiguous memory can be recovered when a

process exits or gets killed by the out-of-memory killer. Their solution, however, is specific to

Android due to its relatively short-lived processes. Moreover, processes are killed in Android

under memory pressure as compared to workstations or servers where paging is preferred over

killing a process.

Gorman et al. proposed defragmenting memory with Lumpy reclaim [98]. Contiguity-aware

page replacement discussed by Navarro et al. [139] is also similar to Lumpy reclaim. These

131

techniques try to recover memory contiguity by dropping file-backed pages from contiguous

regions. Lumpy reclaim was merged in Linux but was removed later as it created regressions

due to additional I/O traffic [5]. In current Linux versions, memory compaction is the preferred

mechanism for defragmenting memory [69]. We show that compaction leads to severe problems

in its current form. Illuminator solves compaction related problems by carefully managing

unmovable pages.

Gorman et al. also proposed two different anti-fragmentation schemes to aid compaction

[97], both of which are merged into Linux. One of the approaches i.e., zone-based demands a

static partitioning of memory between movable and unmovable regions at boot time. However,

such an approach is difficult to employ when memory capacity is limited or when the workload

characteristics are not known in advance. The other approach i.e., Grouping Pages Based on

their Mobility type (GPBM [96]) manages the size of memory partitions dynamically and is more

suitable for dynamic workloads. Page-clustering algorithm of Linux discussed in Chapter 2 is

largely influenced by GPBM. We show how page-clustering leads to fragmentation via pollution

in its current form, and effectively handle the associate challenges with Illuminator.

Our previous work [143] inspired the design and implementation of Illuminator. Illuminator

addresses several shortcomings of this prior work: 1) page allocation in Illuminator is a constant

time O(1) operation, comparing to an O(n) algorithm of [143] (where n is the number of

pageblocks). O(n) algorithm is prohibitively expensive for performance critical subsystems

such as the kernel page allocator. (2) this previous work relied on the two-way classification of

pageblocks whose shortcomings have been discussed throughout Chapter 2. Illuminator shows

that cross subsystem visibility of unmovable pages and coordination among several layers (e.g.,

buddy allocator, slab allocator, and compaction) is crucial. Moreover, Illuminator has also been

evaluated across native and virtualized systems with respect to various aspects of performance

such as latency, OS jitter and execution speedup.

NUMA optimizations: Software-based NUMA optimizations have been proposed for

decades [179, 63]. Applications with complex NUMA properties can directly leverage system

calls to retain control over the placement of their threads and data [123]. Other applications can

rely on built-in system heuristics that automatically drive NUMA optimizations [90, 141, 73].

While OS and library support thus far has focused only on user data pages, we have shown that

the placement of important kernel structures such as page tables is also crucial for performance.

Recent proposals such as KLOC [112] and nrOS [57] also explore the effect of non-uniform mem-

ory access lantecy on the performance of different kernel objects and subsystems.

Replication and migration are popular techniques that have been applied in various con-

texts [167]. Carrefour is a kernel design that transparently replicates and migrates application

132

data on NUMA systems [78]. Shoal provides an abstraction to replicate, partition, and dis-

tribute arrays across NUMA domains [109]. Carrefour-LP optimized large page performance

on NUMA systems by judiciously allocating/demoting large pages [94]. RadixVM used repli-

cation to improve the scalability of the xv6 kernel [68]. Various locking techniques also employ

replication for reducing cross-CPU traffic to achieve high scalability [66]. In contrast, we ap-

ply replication and migration to improve address translation performance. Our technique of

discovering the server’s NUMA topology in vMitosis is inspired by Smelt that derived efficient

communication patterns on multi-core platforms via online measurements [110].

In contrast to conventional NUMA optimizations, vMitosis explores the effect of memory

heterogeneity on virtualized page table walks. While prior techniques are effective for ap-

plication data pages, vMitosis can be used to further improve their efficiency on NUMA-like

systems.

133

Chapter 7

Conclusion and Looking Forward

Data-centric computation in the era of AI stresses the memory subsystem of computers wherein

the efficiency of computation is often determined by that of data accesses. However, before

data can be accessed, the processor needs to translate application-generated virtual addresses

into physical addresses where the data actually resides. This act of address translation often

consumes a significant fraction of CPU cycles. In this thesis, we proposed four optimizations

in the operating system and hypervisor to moderate the overheads of address translation in a

manner that requires no change in applications or the hardware.

In the major part of the thesis, we explored various challenges involved in the management

of huge pages. We highlight various shortcomings of current system designs in managing huge

pages. Our proposal Illuminator deals with external physical memory fragmentation effectively

in turn making it feasible for an OS to allocate huge pages. In HawkEye, we proposed various

techniques to maximize the performance benefits of huge pages and handle various memory

management trade-offs. Trident extends OS support for transparent huge pages to harness

all page sizes available on modern x86 systems. Finally, in vMitosis, we propose NUMA-aware

page table management to mitigate the effect of non-uniform memory access latency on address

translation.

Overall, this thesis shows that virtual memory can continue to thrive even in the age of

data-centric computation. Moreover, we show that this can be done with robust memory man-

agement in operating systems and hypervisors while avoiding modifications to user applications

and additional hardware features. We open-sourced all software created as a part of this the-

sis [27, 28, 29, 30].

Looking ahead, we foresee that memory management will gain further importance for data-

centric computation with the advent of new memory technologies such as non-volatile memory,

high-bandwidth die-stacked memory, and network-attached dis-aggregated memory. An im-

134

portant research direction is to explore how virtual memory should abstract the heterogeneity

across memory technologies. Further, heterogeneity is not just limited to the memory subsys-

tem. Compute accelerators such as GPUs are playing a key role in processing huge datasets.

These trends pose new research challenges in managing the heterogeneity in both memory and

compute.

135

Bibliography

[1] Arch Linux becomes unresponsive from khugepaged. http://unix.stackexchange.com/

questions/161858/arch-linux-becomes-unresponsive-from-khugepaged. 38

[2] Recommendation for disabling huge pages for Hadoop. http://amd-dev.wpengine.

netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf.

6, 9, 38

[3] The black magic of systematically reducing linux os

jitter. http://highscalability.com/blog/2015/4/8/

the-black-magic-of-systematically-reducing-linux-os-jitter.html. 38

[4] khugepaged eating 100% cpu. https://bugzilla.redhat.com/show_bug.cgi?id=

879801. 38

[5] Removal of lumpy reclaim. https://lwn.net/Articles/488993/. 132

[6] Transparent Hugepage Support. https://www.kernel.org/doc/Documentation/vm/

transhuge.txt. 42, 130

[7] Recommendation for disabling huge pages for MongoDB. https://docs.mongodb.org/

manual/tutorial/transparent-huge-pages/. 6, 9, 38

[8] Recommendation for disabling huge pages for NuoDB. http://www.nuodb.com/

techblog/linux-transparent-huge-pages-jemalloc-and-nuodb. 6, 38

[9] About the Virtual Memory System. https://developer.apple.com/library/content/

documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.

html. 36

[10] perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/

index.php/Main_Page. 74

136

http://unix.stackexchange.com/questions/161858/arch-linux-becomes-unresponsive-from-khugepaged
http://unix.stackexchange.com/questions/161858/arch-linux-becomes-unresponsive-from-khugepaged
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
http://highscalability.com/blog/2015/4/8/the-black-magic-of-systematically-reducing-linux-os-jitter.html
http://highscalability.com/blog/2015/4/8/the-black-magic-of-systematically-reducing-linux-os-jitter.html
https://bugzilla.redhat.com/show_bug.cgi?id=879801
https://bugzilla.redhat.com/show_bug.cgi?id=879801
https://lwn.net/Articles/488993/
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://docs.mongodb.org/manual/ tutorial/transparent-huge-pages/
https://docs.mongodb.org/manual/ tutorial/transparent-huge-pages/
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
http://www.nuodb.com/techblog/linux-transparent-huge-pages-jemalloc-and-nuodb
https://developer.apple.com/library/content/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

BIBLIOGRAPHY

[11] pgbench. https://www.postgresql.org/docs/9.1/static/pgbench.html. 27

[12] Recommendation for disabling huge pages for Redis. http://redis.io/topics/latency.

6, 9, 38, 53, 101

[13] Mmtests: Benchmarking framework primarily aimed at linux kernel testing. https:

//github.com/gormanm/mmtests. 29

[14] sysbench. https://dev.mysql.com/downloads/benchmarks.html. 27

[15] Tales from the Field: Taming Transparent Huge Pages on Linux. https://www.

perforce.com/blog/151016/tales-field-taming-transparent-huge-pages-linux.

38

[16] Why TokuDB Hates Transparent HugePages. http://amd-dev.wpengine.netdna-cdn.

com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf. 38

[17] Recommendation for disabling huge pages for VoltDB. https://docs.voltdb.com/

AdminGuide/adminmemmgt.php. 6, 9, 38

[18] Clearing pages in the idle loop. https://www.mail-archive.com/freebsd-hackers@

freebsd.org/msg13993.html, 2000. 47

[19] Linux: Page zeroing strategy. https://yarchive.net/comp/linux/page_zeroing_

strategy.html, 2000. 47

[20] GUPS: HPCC RandomAccess benchmark, 2006. https://github.com/

alexandermerritt/gups. 74, 101

[21] Memory part 5: What programmers can do. https://lwn.net/Articles/255364/, 2007.

48

[22] Mysteries of windows memory management revealed: Part

two. https://blogs.msdn.microsoft.com/tims/2010/10/29/

pdc10-mysteries-of-windows-memory-management-revealed-part-two/, 2010.

47

[23] Coral benchmark codes. https://asc.llnl.gov/CORAL-benchmarks/#hacc, 2014. 67

[24] Remove pg zero and zeroidle (page-zeroing) entirely. https://news.ycombinator.com/

item?id=12227874, 2016. 47

137

https://www.postgresql.org/docs/9.1/static/pgbench.html
http://redis.io/topics/latency
https://github.com/gormanm/mmtests
https://github.com/gormanm/mmtests
https://dev.mysql.com/downloads/benchmarks.html
https://www.perforce.com/blog/151016/tales-field-taming-transparent-huge-pages-linux
https://www.perforce.com/blog/151016/tales-field-taming-transparent-huge-pages-linux
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/Hadoop_Tuning_Guide-Version5.pdf
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://docs.voltdb.com/AdminGuide/adminmemmgt.php
https://www.mail-archive.com/freebsd-hackers@freebsd.org/msg13993.html
https://www.mail-archive.com/freebsd-hackers@freebsd.org/msg13993.html
https://yarchive.net/comp/linux/page_zeroing_strategy.html
https://yarchive.net/comp/linux/page_zeroing_strategy.html
https://github.com/alexandermerritt/gups
https://github.com/alexandermerritt/gups
https://lwn.net/Articles/255364/
https://blogs.msdn.microsoft.com/tims/2010/10/29/pdc10-mysteries-of-windows-memory-management-revealed-part-two/
https://blogs.msdn.microsoft.com/tims/2010/10/29/pdc10-mysteries-of-windows-memory-management-revealed-part-two/
https://asc.llnl.gov/CORAL-benchmarks/##hacc
https://news.ycombinator.com/item?id=12227874
https://news.ycombinator.com/item?id=12227874

BIBLIOGRAPHY

[25] C++ associative containers. https://github.com/sparsehash/sparsehash, 2016. 67

[26] Hugepages. https://wiki.debian.org/Hugepages, 2017. 38, 48, 128

[27] Illuminator. https://github.com/apanwariisc/Illuminator, 2018. 8, 134

[28] Hawkeye. https://github.com/apanwariisc/HawkEye, 2019. 8, 134

[29] Trident. https://github.com/csl-iisc/Trident-MICRO21-artifact, 2019. 8, 134

[30] vmitosis. https://github.com/mitosis-project/vmitosis-asplos21-artifact,

2019. 8, 134

[31] Cgroups: Linux programmer’s manual. http://man7.org/linux/man-pages/man7/

cgroups.7.html, 2019. 53

[32] Freebsd: Pre-faulting and zeroing optimizations. https://www.freebsd.org/doc/en_

US.ISO8859-1/articles/vm-design/prefault-optimizations.html, 2019. 47

[33] Transparent hugepage support. https://www.kernel.org/doc/Documentation/vm/

transhuge.txt, 2019. 42

[34] ab - apache http server benchmarking tool, 2021. https://httpd.apache.org/docs/2.

4/programs/ab.html. 80

[35] Intel® microarchitecture code named skylake events, 2021. https://download.01.org/

perfmon/index/skylake.html. 74

[36] Libsvm data: Classification (binary class), 2021. https://www.csie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/binary.html. 74

[37] Wikichip: Intel sandy bridge microarchitecture, 2021. https://en.wikichip.org/wiki/

intel/microarchitectures/cascade_lake. 72

[38] Wikichip: Intel sandy bridge microarchitecture, 2021. https://en.wikichip.org/wiki/

intel/microarchitectures/sandy_bridge_(client). 71

[39] Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Timothy Roscoe, and Jayneel

Gandhi. Mitosis: Transparently self-replicating page-tables for large-memory machines.

In Proceedings of the Twenty-Fifth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’20, page 283–300, Lausanne,

138

https://github.com/sparsehash/sparsehash
https://wiki.debian.org/Hugepages
https://github.com/apanwariisc/Illuminator
https://github.com/apanwariisc/HawkEye
https://github.com/csl-iisc/Trident-MICRO21-artifact
https://github.com/mitosis-project/vmitosis-asplos21-artifact
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
https://www.freebsd.org/doc/en_US.ISO8859-1/articles/vm-design/prefault-optimizations.html
https://www.freebsd.org/doc/en_US.ISO8859-1/articles/vm-design/prefault-optimizations.html
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://download.01.org/perfmon/index/skylake.html
https://download.01.org/perfmon/index/skylake.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://en.wikichip.org/wiki/intel/microarchitectures/cascade_lake
https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client)

BIBLIOGRAPHY

Switzerland, 2020. ISBN 9781450371025. doi: 10.1145/3373376.3378468. URL https:

//doi.org/10.1145/3373376.3378468. 5, 99, 106, 123

[40] Neha Agarwal and Thomas F. Wenisch. Thermostat: Application-transparent page man-

agement for two-tiered main memory. In Proceedings of the Twenty-Second Interna-

tional Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’17, page 631–644, Xi’an, China, 2017. ISBN 9781450344654. doi:

10.1145/3037697.3037706. URL https://doi.org/10.1145/3037697.3037706. 98

[41] Mohammad Agbarya, Idan Yaniv, and Dan Tsafrir. Memomania: From huge to huge-huge

pages. In Proceedings of the 11th ACM International Systems and Storage Conference,

SYSTOR ’18, pages 112–112, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5849-1.

doi: 10.1145/3211890.3211918. URL http://doi.acm.org/10.1145/3211890.3211918.

48, 130

[42] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. Do-it-yourself virtual

memory translation. In Proceedings of the 44th Annual International Symposium on

Computer Architecture, ISCA ’17, pages 457–468, Toronto, ON, Canada, 2017. ISBN

978-1-4503-4892-8. doi: 10.1145/3079856.3080209. URL http://doi.acm.org/10.1145/

3079856.3080209. 98, 129

[43] K. Albayraktaroglu, A. Jaleel, Xue Wu, M. Franklin, B. Jacob, Chau-Wen Tseng, and

D. Yeung. Biobench: A benchmark suite of bioinformatics applications. In Proceedings of

the IEEE International Symposium on Performance Analysis of Systems and Software,

2005, ISPASS ’05, pages 2–9, Washington, DC, USA, 2005. IEEE Computer Society.

ISBN 0-7803-8965-4. doi: 10.1109/ISPASS.2005.1430554. URL http://dx.doi.org/10.

1109/ISPASS.2005.1430554. 27, 53

[44] Chloe Alverti, Stratos Psomadakis, Vasileios Karakostas, Jayneel Gandhi, Konstantinos

Nikas, Georgios Goumas, and Nectarios Koziris. Enhancing and exploiting contiguity for

fast memory virtualization. In 2020 ACM/IEEE 47th Annual International Symposium

on Computer Architecture (ISCA), pages 515–528, 2020. doi: 10.1109/ISCA45697.2020.

00050. 130

[45] Nadav Amit, Dan Tsafrir, and Assaf Schuster. Vswapper: A memory swapper for

virtualized environments. In Proceedings of the 19th International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, ASPLOS ’14,

139

https://doi.org/10.1145/3373376.3378468
https://doi.org/10.1145/3373376.3378468
https://doi.org/10.1145/3037697.3037706
http://doi.acm.org/10.1145/3211890.3211918
http://doi.acm.org/10.1145/3079856.3080209
http://doi.acm.org/10.1145/3079856.3080209
http://dx.doi.org/10.1109/ISPASS.2005.1430554
http://dx.doi.org/10.1109/ISPASS.2005.1430554

BIBLIOGRAPHY

pages 349–366, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2305-5. doi:

10.1145/2541940.2541969. URL http://doi.acm.org/10.1145/2541940.2541969. 68

[46] AnandTech. The ice lake benchmark preview: Inside intel’s 10nm, 2019. https://www.

anandtech.com/show/14664/testing-intel-ice-lake-10nm/2. 72

[47] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin, and Gabriel H. Loh.

Avoiding tlb shootdowns through self-invalidating tlb entries. In 2017 26th International

Conference on Parallel Architectures and Compilation Techniques (PACT), pages 273–

287, 2017. doi: 10.1109/PACT.2017.38. 29

[48] Chang S. Bae, John R. Lange, and Peter A. Dinda. Enhancing virtualized application

performance through dynamic adaptive paging mode selection. In Proceedings of the

8th ACM International Conference on Autonomic Computing, ICAC ’11, page 255–264,

Karlsruhe, Germany, 2011. ISBN 9781450306072. doi: 10.1145/1998582.1998639. URL

https://doi.org/10.1145/1998582.1998639. 126

[49] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.

Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-

ishnan, and S. K. Weeratunga. The nas parallel benchmarks;summary and preliminary

results. In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, Super-

computing ’91, pages 158–165, New York, NY, USA, 1991. ACM. ISBN 0-89791-459-7.

doi: 10.1145/125826.125925. URL http://doi.acm.org/10.1145/125826.125925. 27,

45, 53, 69, 74

[50] Katherine Barabash, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner, Victor Leikehman,

Yoav Ossia, Avi Owshanko, and Erez Petrank. A parallel, incremental, mostly con-

current garbage collector for servers. ACM Trans. Program. Lang. Syst., 27(6):1097–

1146, November 2005. ISSN 0164-0925. doi: 10.1145/1108970.1108972. URL http:

//doi.acm.org/10.1145/1108970.1108972. 131

[51] Thomas W. Barr, Alan L. Cox, and Scott Rixner. Translation caching: Skip, don’t

walk (the page table). In Proceedings of the 37th Annual International Symposium on

Computer Architecture, ISCA ’10, pages 48–59, New York, NY, USA, 2010. ACM. ISBN

978-1-4503-0053-7. doi: 10.1145/1815961.1815970. URL http://doi.acm.org/10.1145/

1815961.1815970. 128

140

http://doi.acm.org/10.1145/2541940.2541969
https://www.anandtech.com/show/14664/testing-intel-ice-lake-10nm/2
https://www.anandtech.com/show/14664/testing-intel-ice-lake-10nm/2
https://doi.org/10.1145/1998582.1998639
http://doi.acm.org/10.1145/125826.125925
http://doi.acm.org/10.1145/1108970.1108972
http://doi.acm.org/10.1145/1108970.1108972
http://doi.acm.org/10.1145/1815961.1815970
http://doi.acm.org/10.1145/1815961.1815970

BIBLIOGRAPHY

[52] Thomas W. Barr, Alan L. Cox, and Scott Rixner. Spectlb: A mechanism for spec-

ulative address translation. In Proceedings of the 38th Annual International Sym-

posium on Computer Architecture, ISCA ’11, pages 307–318, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-0472-6. doi: 10.1145/2000064.2000101. URL http:

//doi.acm.org/10.1145/2000064.2000101. 129

[53] A. Basu, M. D. Hill, and M. M. Swift. Reducing memory reference energy with oppor-

tunistic virtual caching. In Proceedings of the 39th Annual International Symposium on

Computer Architecture, ISCA ’12, pages 297–308, Washington, DC, USA, 2012. IEEE

Computer Society. ISBN 978-1-4503-1642-2. URL http://dl.acm.org/citation.cfm?

id=2337159.2337194. 3

[54] Arkaprava Basu. Revisiting virtual memory. PhD thesis, University of Wisconsin-

Madison, December 2013. 80

[55] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M. Swift.

Efficient virtual memory for big memory servers. In Proceedings of the 40th Annual

International Symposium on Computer Architecture, ISCA ’13, pages 237–248, New York,

NY, USA, 2013. ACM. ISBN 978-1-4503-2079-5. doi: 10.1145/2485922.2485943. URL

http://doi.acm.org/10.1145/2485922.2485943. 3, 10, 12, 37, 53, 128

[56] Scott Beamer, Krste Asanovic, and David A. Patterson. The GAP benchmark suite.

CoRR, abs/1508.03619, 2015. URL http://arxiv.org/abs/1508.03619. 53, 69, 74

[57] Ankit Bhardwaj, Chinmay Kulkarni, Reto Achermann, Irina Calciu, Sanidhya Kashyap,

Ryan Stutsman, Amy Tai, and Gerd Zellweger. Nros: Effective replication and sharing

in an operating system. In 15th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 21), pages 295–312. USENIX Association, July 2021. ISBN 978-

1-939133-22-9. URL https://www.usenix.org/conference/osdi21/presentation/

bhardwaj. 132

[58] Ravi Bhargava, Ben Serebrin, Francesco Spadini, and Srilatha Manne. Accelerating two-

dimensional page walks for virtualized systems. In Proceedings of the 13th International

Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS 2008, Seattle, WA, USA, March 1-5, 2008, pages 26–35, 2008. doi: 10.1145/

1346281.1346286. URL http://doi.acm.org/10.1145/1346281.1346286. 3, 4, 38

[59] A. Bhattacharjee, D. Lustig, and M. Martonosi. Architectural and Operating System

Support for Virtual Memory. Synthesis Lectures on Computer Architecture. Morgan &

141

http://doi.acm.org/10.1145/2000064.2000101
http://doi.acm.org/10.1145/2000064.2000101
http://dl.acm.org/citation.cfm?id=2337159.2337194
http://dl.acm.org/citation.cfm?id=2337159.2337194
http://doi.acm.org/10.1145/2485922.2485943
http://arxiv.org/abs/1508.03619
https://www.usenix.org/conference/osdi21/presentation/bhardwaj
https://www.usenix.org/conference/osdi21/presentation/bhardwaj
http://doi.acm.org/10.1145/1346281.1346286

BIBLIOGRAPHY

Claypool Publishers, 2017. ISBN 9781627059336. URL https://books.google.co.in/

books?id=roM4DwAAQBAJ. 4, 128

[60] Abhishek Bhattacharjee. Large-reach memory management unit caches. In Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-

46, pages 383–394, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2638-4. doi:

10.1145/2540708.2540741. URL http://doi.acm.org/10.1145/2540708.2540741. 38,

129

[61] Abhishek Bhattacharjee. Translation-Triggered Prefetching. In Proceedings of the

Twenty-Second International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS ’17, pages 63–76, Xi’an, China, 2017. ISBN

978-1-4503-4465-4. doi: 10.1145/3037697.3037705. URL http://doi.acm.org/10.1145/

3037697.3037705. 98, 100

[62] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton Univer-

sity, January 2011. 27, 53, 69, 74, 101

[63] William J. Bolosky, Robert P. Fitzgerald, and Michael L. Scott. Simple but Ef-

fective Techniques for NUMA Memory Management. In Proceedings of the Twelfth

ACM Symposium on Operating Systems Principles, SOSP ’89, pages 19–31, Litch-

field Park, AZ, USA, 1989. ISBN 0-89791-338-8. doi: 10.1145/74850.74854. URL

http://doi.acm.org/10.1145/74850.74854. 5, 132

[64] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly & Associates

Inc, 2005. ISBN 0596005652. 11, 49

[65] Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J. Marathe, and Nir

Shavit. Numa-aware reader-writer locks. In Proceedings of the 18th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming, PPoPP ’13, page 157–166,

Shenzhen, China, 2013. ISBN 9781450319225. doi: 10.1145/2442516.2442532. URL

https://doi.org/10.1145/2442516.2442532. 111

[66] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera. Black-box

Concurrent Data Structures for NUMA Architectures. In Proceedings of the Twenty-

Second International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS ’17, pages 207–221, Xi’an, China, 2017. ISBN 978-

1-4503-4465-4. doi: 10.1145/3037697.3037721. URL http://doi.acm.org/10.1145/

3037697.3037721. 98, 133

142

https://books.google.co.in/books?id=roM4DwAAQBAJ
https://books.google.co.in/books?id=roM4DwAAQBAJ
http://doi.acm.org/10.1145/2540708.2540741
http://doi.acm.org/10.1145/3037697.3037705
http://doi.acm.org/10.1145/3037697.3037705
http://doi.acm.org/10.1145/74850.74854
https://doi.org/10.1145/2442516.2442532
http://doi.acm.org/10.1145/3037697.3037721
http://doi.acm.org/10.1145/3037697.3037721

BIBLIOGRAPHY

[67] Josiah L. Carlson. Redis in Action. Manning Publications Co., Greenwich, CT, USA,

2013. ISBN 1617290858, 9781617290855. 41, 74

[68] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. Radixvm: Scalable

address spaces for multithreaded applications. In Proceedings of the 8th ACM European

Conference on Computer Systems, EuroSys ’13, pages 211–224, Prague, Czech Republic,

2013. ISBN 978-1-4503-1994-2. doi: 10.1145/2465351.2465373. URL http://doi.acm.

org/10.1145/2465351.2465373. 133

[69] Jonathan Corbet. Memory compaction. https://lwn.net/Articles/368869/, . 10, 14,

39, 132

[70] Jonathan Corbet. Proactive compaction. https://lwn.net/Articles/717656/, . 10

[71] Jonathan Corbet. Virtually mapped kernel stacks. https://lwn.net/Articles/

692208/, . 12

[72] Jonathan Corbet. Large pages, large blocks, and large problems. Online https://lwn.

net/Articles/250335/, 2007. 6, 125

[73] Jonathan Corbet. AutoNUMA: the other approach to NUMA scheduling. https://lwn.

net/Articles/488709/, 2012. 108, 132

[74] Jonathan Corbet. Numa scheduling progress. Online https://lwn.net/Articles/

568870/, 2014. 98, 101

[75] Jonathan Corbet. Transparent huge pages, numa locality, and performance regressions.

Online https://lwn.net/Articles/787434/, 2019. 6, 125

[76] Guilherme Cox and Abhishek Bhattacharjee. Efficient address translation for architec-

tures with multiple page sizes. In Proceedings of the Twenty-Second International Con-

ference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’17, pages 435–448, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4465-4.

doi: 10.1145/3037697.3037704. URL http://doi.acm.org/10.1145/3037697.3037704.

38, 129

[77] Ian Cutress. Intel’s Enterprise Extravaganza 2019: Launching Cascade Lake, Optane

DCPMM, Agilex FPGAs, 100G Ethernet, and Xeon D-1600. https://www.anandtech.

com/show/14155/intels-enterprise-extravaganza-2019-roundup, 2019. 72

143

http://doi.acm.org/10.1145/2465351.2465373
http://doi.acm.org/10.1145/2465351.2465373
https://lwn.net/Articles/368869/
https://lwn.net/Articles/717656/
https://lwn.net/Articles/692208/
https://lwn.net/Articles/692208/
https://lwn.net/Articles/250335/
https://lwn.net/Articles/250335/
https://lwn.net/Articles/488709/
https://lwn.net/Articles/488709/
https://lwn.net/Articles/568870/
https://lwn.net/Articles/568870/
https://lwn.net/Articles/787434/
http://doi.acm.org/10.1145/3037697.3037704
https://www.anandtech.com/show/14155/intels-enterprise-extravaganza-2019-roundup
https://www.anandtech.com/show/14155/intels-enterprise-extravaganza-2019-roundup

BIBLIOGRAPHY

[78] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud, Renaud Lachaize,

Baptiste Lepers, Vivien Quema, and Mark Roth. Traffic Management: A Holistic Ap-

proach to Memory Placement on NUMA Systems. In Proceedings of the Eighteenth Inter-

national Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’13, pages 381–394, Houston, Texas, USA, 2013. ISBN 978-1-4503-

1870-9. doi: 10.1145/2451116.2451157. URL http://doi.acm.org/10.1145/2451116.

2451157. 5, 98, 133

[79] Alan Demers, Mark Weiser, Barry Hayes, Hans Boehm, Daniel Bobrow, and Scott

Shenker. Combining generational and conservative garbage collection: Framework and

implementations. In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’90, pages 261–269, New York, NY, USA,

1990. ACM. ISBN 0-89791-343-4. doi: 10.1145/96709.96735. URL http://doi.acm.

org/10.1145/96709.96735. 131

[80] Linux Kernel Documentation. Split page table lock. Online https://www.kernel.org/

doc/html/latest/vm/split_page_table_lock.html, 2020. 109

[81] Windows documentation. Large-Page Support in Windows. https://msdn.microsoft.

com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx. 20

[82] Windows Documentation. Large-Page Support in Windows Operating System. https:

//docs.microsoft.com/en-us/windows/win32/memory/large-page-support. 10

[83] Tamar Domani, Elliot K. Kolodner, and Erez Petrank. A generational on-the-fly garbage

collector for java. In Proceedings of the ACM SIGPLAN 2000 Conference on Programming

Language Design and Implementation, PLDI ’00, pages 274–284, New York, NY, USA,

2000. ACM. ISBN 1-58113-199-2. doi: 10.1145/349299.349336. URL http://doi.acm.

org/10.1145/349299.349336. 131

[84] E Knuth Donald et al. The art of computer programming. Sorting and searching, 3:

426–458, 1999. 81

[85] Cort Dougan, Paul Mackerras, and Victor Yodaiken. Optimizing the idle task and other

mmu tricks. In Proceedings of the Third Symposium on Operating Systems Design and Im-

plementation, OSDI ’99, pages 229–237, Berkeley, CA, USA, 1999. USENIX Association.

ISBN 1-880446-39-1. URL http://dl.acm.org/citation.cfm?id=296806.296833. 47

144

http://doi.acm.org/10.1145/2451116.2451157
http://doi.acm.org/10.1145/2451116.2451157
http://doi.acm.org/10.1145/96709.96735
http://doi.acm.org/10.1145/96709.96735
https://www.kernel.org/doc/html/latest/vm/split_page_table_lock.html
https://www.kernel.org/doc/html/latest/vm/split_page_table_lock.html
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366720(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows/win32/memory/large-page-support
https://docs.microsoft.com/en-us/windows/win32/memory/large-page-support
http://doi.acm.org/10.1145/349299.349336
http://doi.acm.org/10.1145/349299.349336
http://dl.acm.org/citation.cfm?id=296806.296833

BIBLIOGRAPHY

[86] Niall Douglas. User mode memory page allocation: A silver bullet for memory allocation?

CoRR, abs/1105.1811, 2011. URL http://arxiv.org/abs/1105.1811. 47

[87] Ulrich Drepper. What every programmer should know about memory, 2007. 47

[88] Yu Du, Miao Zhou, Bruce R. Childers, Daniel Mossé, and Rami Melhem. Supporting

superpages in non-contiguous physical memory. In 2015 IEEE 21st International Sym-

posium on High Performance Computer Architecture (HPCA), pages 223–234, 2015. doi:

10.1109/HPCA.2015.7056035. 129

[89] Brad Fitzpatrick. Distributed caching with memcached. Linux J., 2004(124):5, August

2004. ISSN 1075-3583. 74, 101

[90] FreeBSD. FreeBSD - NUMA. https://wiki.freebsd.org/NUMA. 132

[91] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift. Efficient memory

virtualization: Reducing dimensionality of nested page walks. In Proceedings of the 47th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-47, pages

178–189, Washington, DC, USA, 2014. IEEE Computer Society. ISBN 978-1-4799-6998-

2. doi: 10.1109/MICRO.2014.37. URL http://dx.doi.org/10.1109/MICRO.2014.37.

3, 5, 10, 37, 38, 128

[92] Jayneel Gandhi, Mark D. Hill, and Michael M. Swift. Agile Paging: Exceeding the Best

of Nested and Shadow Paging. In Proceedings of the 43rd International Symposium on

Computer Architecture, ISCA ’16, pages 707–718, Seoul, Republic of Korea, 2016. ISBN

978-1-4673-8947-1. doi: 10.1109/ISCA.2016.67. URL https://doi.org/10.1109/ISCA.

2016.67. 5, 98, 126, 129

[93] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexandra Fedorova,

and Vivien Quéma. Large pages may be harmful on numa systems. In Proceedings of the

2014 USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14,

pages 231–242, Berkeley, CA, USA, 2014. USENIX Association. ISBN 978-1-931971-10-2.

URL http://dl.acm.org/citation.cfm?id=2643634.2643659. 38

[94] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexandra Fedorova,

and Vivien Quéma. Large pages may be harmful on numa systems. In Proceedings of the

2014 USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14,

pages 231–242, Berkeley, CA, USA, 2014. USENIX Association. ISBN 978-1-931971-10-2.

URL http://dl.acm.org/citation.cfm?id=2643634.2643659. 125, 130, 133

145

http://arxiv.org/abs/1105.1811
https://wiki.freebsd.org/NUMA
http://dx.doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1109/ISCA.2016.67
https://doi.org/10.1109/ISCA.2016.67
http://dl.acm.org/citation.cfm?id=2643634.2643659
http://dl.acm.org/citation.cfm?id=2643634.2643659

BIBLIOGRAPHY

[95] Mel Gorman. Cost model for memory compaction. http://lkml.iu.edu/hypermail/

linux/kernel/1211.2/03725.html. 28

[96] Mel Gorman and Patrick Healy. Supporting superpage allocation without additional hard-

ware support. In Proceedings of the 7th International Symposium on Memory Manage-

ment, ISMM ’08, pages 41–50, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-134-7.

doi: 10.1145/1375634.1375641. URL http://doi.acm.org/10.1145/1375634.1375641.

9, 14, 36, 98, 131, 132

[97] Mel Gorman and Andy Whitcroft. The what, the why and the where to of anti-

fragmentation. In Linux Symposium, page 141, 2006. 14, 75, 132

[98] Mel Gorman and Andy Whitcroft. Supporting the allocation of large contiguous regions

of memory. In Linux Symposium, page 141, 2007. 131

[99] Brendan Gregg. How netflix tunes ec2 instances for performance, 2017. http://www.

brendangregg.com/Slides/AWSreInvent2017_performance_tuning_EC2.pdf. 94

[100] Fan Guo, Yongkun Li, Yinlong Xu, Song Jiang, and John C. S. Lui. Smartmd: A

high performance deduplication engine with mixed pages. In Proceedings of the 2017

USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’17, pages

733–744, Berkeley, CA, USA, 2017. USENIX Association. ISBN 978-1-931971-38-6. URL

http://dl.acm.org/citation.cfm?id=3154690.3154759. 50, 131

[101] Fei Guo, Seongbeom Kim, Yury Baskakov, and Ishan Banerjee. Proactively breaking large

pages to improve memory overcommitment performance in vmware esxi. In Proceedings

of the 11th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution En-

vironments, VEE ’15, pages 39–51, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-

3450-1. doi: 10.1145/2731186.2731187. URL http://doi.acm.org/10.1145/2731186.

2731187. 131

[102] Fei Guo, Seongbeom Kim, Yury Baskakov, and Ishan Banerjee. Proactively breaking large

pages to improve memory overcommitment performance in vmware esxi. In Proceedings

of the 11th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution En-

vironments, VEE ’15, pages 39–51, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-

3450-1. doi: 10.1145/2731186.2731187. URL http://doi.acm.org/10.1145/2731186.

2731187. 50, 53

146

http://lkml.iu.edu/hypermail/linux/kernel/1211.2/03725.html
http://lkml.iu.edu/hypermail/linux/kernel/1211.2/03725.html
http://doi.acm.org/10.1145/1375634.1375641
http://www.brendangregg.com/Slides/AWSreInvent2017_performance_tuning_EC2.pdf
http://www.brendangregg.com/Slides/AWSreInvent2017_performance_tuning_EC2.pdf
http://dl.acm.org/citation.cfm?id=3154690.3154759
http://doi.acm.org/10.1145/2731186.2731187
http://doi.acm.org/10.1145/2731186.2731187
http://doi.acm.org/10.1145/2731186.2731187
http://doi.acm.org/10.1145/2731186.2731187

BIBLIOGRAPHY

[103] Faruk Guvenilir and Yale N Patt. Tailored page sizes. In 2020 ACM/IEEE 47th Annual

International Symposium on Computer Architecture (ISCA), pages 900–912. IEEE, 2020.

129

[104] Swapnil Haria, Mark D. Hill, and Michael M. Swift. Devirtualizing memory in het-

erogeneous systems. SIGPLAN Not., 53(2):637–650, mar 2018. ISSN 0362-1340. doi:

10.1145/3296957.3173194. URL https://doi.org/10.1145/3296957.3173194. 128

[105] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput. Archit.

News, 34(4):1–17, September 2006. ISSN 0163-5964. doi: 10.1145/1186736.1186737.

URL http://doi.acm.org/10.1145/1186736.1186737. 27, 53, 69

[106] A.H. Hunter, Chris Kennelly, Paul Turner, Darryl Gove, Tipp Moseley, and Parthasarathy

Ranganathan. Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory

allocator. In 15th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 21), pages 257–273. USENIX Association, July 2021. ISBN 978-1-939133-22-9.

URL https://www.usenix.org/conference/osdi21/presentation/hunter. 4, 7, 72

[107] Intel. Intel® 64 and ia-32 architectures developer’s manual, vol. 3c. Online

https://www.intel.in/content/www/in/en/architecture-and-technology/

64-ia-32-architectures-software-developer-vol-3c-part-3-manual.html,

2020. 110

[108] Intel Corporation. 5-Level Paging and 5-Level EPT. https://software.intel.com/

sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf, 2017. 5

[109] Stefan Kaestle, Reto Achermann, Timothy Roscoe, and Tim Harris. Shoal: Smart Al-

location and Replication of Memory for Parallel Programs. In Proceedings of the 2015

USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’15, pages

263–276, Santa Clara, CA, 2015. ISBN 978-1-931971-225. URL https://www.usenix.

org/conference/atc15/technical-session/presentation/kaestle. 133

[110] Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz Hoffmann, Sabela Ramos, and

Timothy Roscoe. Machine-aware atomic broadcast trees for multicores. In Proceedings

of the 12th USENIX Conference on Operating Systems Design and Implementation,

OSDI’16, page 33–48, Savannah, GA, USA, 2016. ISBN 9781931971331. URL https://

www.usenix.org/conference/osdi16/technical-sessions/presentation/kaestle.

111, 133

147

https://doi.org/10.1145/3296957.3173194
http://doi.acm.org/10.1145/1186736.1186737
https://www.usenix.org/conference/osdi21/presentation/hunter
https://www.intel.in/content/www/in/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.html
https://www.intel.in/content/www/in/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3c-part-3-manual.html
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://www.usenix.org/conference/atc15/technical-session/presentation/kaestle
https://www.usenix.org/conference/atc15/technical-session/presentation/kaestle
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kaestle
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kaestle

BIBLIOGRAPHY

[111] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. Heteroos: Os

design for heterogeneous memory management in datacenter. In Proceedings of the 44th

Annual International Symposium on Computer Architecture, ISCA ’17, page 521–534,

Toronto, ON, Canada, 2017. ISBN 9781450348928. doi: 10.1145/3079856.3080245. URL

https://doi.org/10.1145/3079856.3080245. 5, 98

[112] Sudarsun Kannan, Yujie Ren, and Abhishek Bhattacharjee. KLOCs: Kernel-Level Object

Contexts for Heterogeneous Memory Systems, page 65–78. Association for Computing

Machinery, New York, NY, USA, 2021. ISBN 9781450383172. URL https://doi.org/

10.1145/3445814.3446745. 132

[113] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley, M. Nemirovsky, M. M.

Swift, and O. S. Unsal. Energy-efficient address translation. In 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages 631–643, March

2016. doi: 10.1109/HPCA.2016.7446100. 3

[114] Vasileios Karakostas, Osman S. Unsal, Mario Nemirovsky, Adrián Cristal, and Michael M.

Swift. Performance analysis of the memory management unit under scale-out workloads.

2014 IEEE International Symposium on Workload Characterization (IISWC), pages 1–12,

2014. xv, 46, 49

[115] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,

Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Ünsal. Redun-

dant memory mappings for fast access to large memories. SIGARCH Comput. Archit.

News, 43(3S):66–78, jun 2015. ISSN 0163-5964. doi: 10.1145/2872887.2749471. URL

https://doi.org/10.1145/2872887.2749471. 130

[116] Sang-Hoon Kim, Sejun Kwon, Jin-Soo Kim, and Jinkyu Jeong. Controlling physi-

cal memory fragmentation in mobile systems. In Proceedings of the 2015 Interna-

tional Symposium on Memory Management, ISMM ’15, pages 1–14, New York, NY,

USA, 2015. ACM. ISBN 978-1-4503-3589-8. doi: 10.1145/2754169.2754179. URL

http://doi.acm.org/10.1145/2754169.2754179. 10, 131

[117] Kenneth C. Knowlton. A fast storage allocator. Commun. ACM, 8(10):623–624, oct

1965. ISSN 0001-0782. doi: 10.1145/365628.365655. URL https://doi.org/10.1145/

365628.365655. 15

148

https://doi.org/10.1145/3079856.3080245
https://doi.org/10.1145/3445814.3446745
https://doi.org/10.1145/3445814.3446745
https://doi.org/10.1145/2872887.2749471
http://doi.acm.org/10.1145/2754169.2754179
https://doi.org/10.1145/365628.365655
https://doi.org/10.1145/365628.365655

BIBLIOGRAPHY

[118] Donald E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algorithms.

Addison-Wesley, Reading, Mass., third edition, 1997. ISBN 0201896834 9780201896831.

15

[119] Joe Kozlowicz. Checking your virtual machine numa con-

figuration. Online https://www.greenhousedata.com/blog/

dont-turn-numa-numa-yay-into-numa-numa-nay-checking-virtual-machine-numa,

2018. 99

[120] Mohan Kumar Kumar, Steffen Maass, Sanidhya Kashyap, Ján Veselý, Zi Yan, Taesoo

Kim, Abhishek Bhattacharjee, and Tushar Krishna. Latr: Lazy translation coherence.

SIGPLAN Not., 53(2):651–664, mar 2018. ISSN 0362-1340. doi: 10.1145/3296957.

3173198. URL https://doi.org/10.1145/3296957.3173198. 17, 29

[121] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett

Witchel. Coordinated and efficient huge page management with ingens. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16), pages 705–721,

GA, 2016. USENIX Association. ISBN 978-1-931971-33-1. URL https://www.usenix.

org/conference/osdi16/technical-sessions/presentation/kwon. 3, 38, 39, 40, 52,

53, 66, 91, 98, 130, 131

[122] Kieran Laffan. Sql server best practices, part i: Configuration. Online https://www.

varonis.com/blog/sql-server-best-practices-part-configuration/, 2020. 99

[123] Christoph Lameter. NUMA (Non-Uniform Memory Access): An Overview. Queue, 11

(7):40:40–40:51, July 2013. ISSN 1542-7730. doi: 10.1145/2508834.2513149. URL http:

//doi.acm.org/10.1145/2508834.2513149. 5, 132

[124] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grimberg, Liran Liss,

Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. Page fault support for network con-

trollers. In Proceedings of the Twenty-Second International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’17, page 449–466,

New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450344654.

doi: 10.1145/3037697.3037710. URL https://doi.org/10.1145/3037697.3037710. 36

[125] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the lifetimes

of objects. Commun. ACM, 26(6):419–429, June 1983. ISSN 0001-0782. doi: 10.1145/

358141.358147. URL http://doi.acm.org/10.1145/358141.358147. 131

149

https://www.greenhousedata.com/blog/dont-turn-numa-numa-yay-into-numa-numa-nay-checking-virtual-machine-numa
https://www.greenhousedata.com/blog/dont-turn-numa-numa-yay-into-numa-numa-nay-checking-virtual-machine-numa
https://doi.org/10.1145/3296957.3173198
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.varonis.com/blog/sql-server-best-practices-part-configuration/
https://www.varonis.com/blog/sql-server-best-practices-part-configuration/
http://doi.acm.org/10.1145/2508834.2513149
http://doi.acm.org/10.1145/2508834.2513149
https://doi.org/10.1145/3037697.3037710
http://doi.acm.org/10.1145/358141.358147

BIBLIOGRAPHY

[126] Linux Kernel Documentation. 5-Level Paging. https://www.kernel.org/doc/html/

latest/x86/x86_64/5level-paging.html, 2022. 5

[127] LinuxVersions. Linux kernel changelog. https://kernelnewbies.org/LinuxVersions.

10

[128] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard,

Kathryn S. McKinley, and Colin Raffel. Learning-Based Memory Allocation for C++

Server Workloads, page 541–556. Association for Computing Machinery, New York, NY,

USA, 2020. ISBN 9781450371025. URL https://doi.org/10.1145/3373376.3378525.

40, 42, 131

[129] Joshua Magee and Apan Qasem. A case for compiler-driven superpage allocation. In

Proceedings of the 47th Annual Southeast Regional Conference, ACM-SE 47, pages 82:1–

82:4, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-421-8. doi: 10.1145/1566445.

1566553. URL http://doi.acm.org/10.1145/1566445.1566553. 45, 130

[130] Kristie Mann. Five use cases of intel optane dc persistent memory at work in the data

center, 2019. https://itpeernetwork.intel.com/intel-optane-use-cases/. 72

[131] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. Virtual ad-

dress translation via learned page table indexes. In Proceedings of the Workshop on ML

for Systems at NeurIPS, 2018. 129

[132] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. Prefetched

address translation. In Proceedings of the 52nd Annual IEEE/ACM International Sympo-

sium on Microarchitecture, MICRO ’52, page 1023–1036, New York, NY, USA, 2019. As-

sociation for Computing Machinery. ISBN 9781450369381. doi: 10.1145/3352460.3358294.

URL https://doi.org/10.1145/3352460.3358294. 129

[133] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance

Computers. https://www.cs.virginia.edu/stream/, 2019. 103

[134] Paul E McKenney, Dipankar Sarma, Ingo Molnar, and Suparna Bhattacharya. Extending

rcu for realtime and embedded workloads. In Ottawa Linux Symposium, pages v2, pages

123–138. Citeseer, 2006. 18

[135] Marshall Kirk McKusick, George Neville-Neil, and Robert N.M. Watson. The Design

and Implementation of the FreeBSD Operating System. Addison-Wesley Professional,

2nd edition, 2014. ISBN 0321968972, 9780321968975. 36

150

https://www.kernel.org/doc/html/latest/x86/x86_64/5level-paging.html
https://www.kernel.org/doc/html/latest/x86/x86_64/5level-paging.html
https://kernelnewbies.org/LinuxVersions
https://doi.org/10.1145/3373376.3378525
http://doi.acm.org/10.1145/1566445.1566553
https://itpeernetwork.intel.com/intel-optane-use-cases/
https://doi.org/10.1145/3352460.3358294
https://www.cs.virginia.edu/stream/

BIBLIOGRAPHY

[136] Timothy Merrifield and H. Reza Taheri. Performance implications of extended page

tables on virtualized x86 processors. In Proceedings of the12th ACM SIGPLAN/SIGOPS

International Conference on Virtual Execution Environments, VEE ’16, pages 25–35, New

York, NY, USA, 2016. ACM. ISBN 978-1-4503-3947-6. doi: 10.1145/2892242.2892258.

URL http://doi.acm.org/10.1145/2892242.2892258. 3, 5

[137] Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi. Operating system

support for nvm+dram hybrid main memory. In Proceedings of the 12th Conference on

Hot Topics in Operating Systems, HotOS’09, page 14, Monte Verità, Switzerland, 2009.

5, 97

[138] Djob Mvondo, Boris Teabe, Alain Tchana, Daniel Hagimont, and Noel De Palma. Memory

flipping: a threat to NUMA virtual machines in the cloud. In 2019 IEEE Conference on

Computer Communications, INFOCOM 2019, Paris, France, April 29 - May 2, 2019,

pages 325–333, 2019. doi: 10.1109/INFOCOM.2019.8737548. URL https://doi.org/

10.1109/INFOCOM.2019.8737548. 99

[139] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan L. Cox. Practical, transparent

operating system support for superpages. In 5th Symposium on Operating System Design

and Implementation (OSDI 2002), Boston, Massachusetts, USA, December 9-11, 2002,

2002. URL http://www.usenix.org/events/osdi02/tech/navarro.html. 9, 36, 38,

39, 52, 130, 131

[140] nix Documentation Project. zone - freebsd. https://nixdoc.net/man-pages/FreeBSD/

man9/zone.9.html. 36

[141] Oracle. Solaris 11.4 - Locality Groups and Thread and Memory Placement. https:

//docs.oracle.com/cd/E37838_01/html/E61059/lgroups-32.html, 12 2019. 132

[142] Akash Panda, Ashish Panwar, and Arkaprava Basu. nuksm: Numa-aware memory de-

duplication on multi-socket servers. In 2021 30th International Conference on Parallel

Architectures and Compilation Techniques (PACT), pages 258–273, 2021. doi: 10.1109/

PACT52795.2021.00026. 50

[143] Ashish Panwar, Naman Patel, and K. Gopinath. A case for protecting huge pages from

the kernel. In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on Systems,

APSys ’16, Hong Kong, Hong Kong, 2016. ISBN 9781450342650. doi: 10.1145/2967360.

2967371. URL https://doi.org/10.1145/2967360.2967371. 98, 132

151

http://doi.acm.org/10.1145/2892242.2892258
https://doi.org/10.1109/INFOCOM.2019.8737548
https://doi.org/10.1109/INFOCOM.2019.8737548
http://www.usenix.org/events/osdi02/tech/navarro.html
https://nixdoc.net/man-pages/FreeBSD/man9/zone.9.html
https://nixdoc.net/man-pages/FreeBSD/man9/zone.9.html
https://docs.oracle.com/cd/E37838_01/html/E61059/lgroups-32.html
https://docs.oracle.com/cd/E37838_01/html/E61059/lgroups-32.html
https://doi.org/10.1145/2967360.2967371

BIBLIOGRAPHY

[144] Ashish Panwar, Aravinda Prasad, and K. Gopinath. Making huge pages actually useful.

In Proceedings of the Twenty-Third International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’18, pages 679–692, New York,

NY, USA, 2018. ACM. ISBN 978-1-4503-4911-6. doi: 10.1145/3173162.3173203. URL

http://doi.acm.org/10.1145/3173162.3173203. 6, 98

[145] Ashish Panwar, Sorav Bansal, and K. Gopinath. Hawkeye: Efficient fine-grained os

support for huge pages. In Proceedings of the Twenty-fourth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19,

New York, NY, USA, 2019. ACM. 6

[146] Ashish Panwar, Reto Achermann, Arkaprava Basu, Abhishek Bhattacharjee,

K. Gopinath, and Jayneel Gandhi. Fast Local Page-Tables for Virtualized NUMA Servers

with VMitosis, page 194–210. Association for Computing Machinery, New York, NY,

USA, 2021. ISBN 9781450383172. URL https://doi.org/10.1145/3445814.3446709.

6

[147] M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos. Prediction-based superpage-

friendly tlb designs. In 2015 IEEE 21st International Symposium on High Performance

Computer Architecture (HPCA), pages 210–222, 2015. doi: 10.1109/HPCA.2015.7056034.

80

[148] Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-Schaffer. Page

tables: Keeping them flat and hot (cached), 2020. URL https://arxiv.org/abs/2012.

05079. 129

[149] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattacharjee.

Colt: Coalesced large-reach tlbs. In Proceedings of the 2012 45th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-45, pages 258–269, Washington,

DC, USA, 2012. IEEE Computer Society. ISBN 978-0-7695-4924-8. doi: 10.1109/MICRO.

2012.32. URL https://doi.org/10.1109/MICRO.2012.32. 38, 129

[150] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H. Loh. Increasing

tlb reach by exploiting clustering in page translations. 2014 IEEE 20th International

Symposium on High Performance Computer Architecture (HPCA), pages 558–567, 2014.

129

[151] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek Bhattacharjee. Large pages

and lightweight memory management in virtualized environments: Can you have it both

152

http://doi.acm.org/10.1145/3173162.3173203
https://doi.org/10.1145/3445814.3446709
https://arxiv.org/abs/2012.05079
https://arxiv.org/abs/2012.05079
https://doi.org/10.1109/MICRO.2012.32

BIBLIOGRAPHY

ways? In Proceedings of the 48th International Symposium on Microarchitecture, MICRO-

48, pages 1–12, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-4034-2. doi: 10.1145/

2830772.2830773. URL http://doi.acm.org/10.1145/2830772.2830773. 10, 38

[152] Bobby Powers, David Tench, Emery D. Berger, and Andrew McGregor. Mesh: Com-

pacting memory management for c/c++ applications. In Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI

2019, page 333–346, New York, NY, USA, 2019. Association for Computing Machin-

ery. ISBN 9781450367127. doi: 10.1145/3314221.3314582. URL https://doi.org/10.

1145/3314221.3314582. 40

[153] Aravinda Prasad and K. Gopinath. Prudent memory reclamation in procrastination-

based synchronization. In Proceedings of the Twenty-First International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS ’16,

pages 99–112, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4091-5. doi: 10.1145/

2872362.2872405. URL http://doi.acm.org/10.1145/2872362.2872405. 19, 24

[154] Mitosis Linux Project. Mitosis linux. Online https://github.com/mitosis-project/

mitosis-linux/. Accessed 20. May 2020, 2020. 111, 114

[155] Kiran Puttaswamy and Gabriel Loh. Thermal analysis of a 3d die-stacked high-

performance microprocessor. In Proceedings of the 16th ACM Great Lakes Symposium on

VLSI, GLSVLSI ’06, pages 19–24, New York, NY, USA, 2006. ACM. ISBN 1-59593-347-6.

doi: 10.1145/1127908.1127915. URL http://doi.acm.org/10.1145/1127908.1127915.

3, 75

[156] Venkat Sri Sai Ram, Ashish Panwar, and Arkaprava Basu. Trident: Harnessing ar-

chitectural resources for all page sizes in x86 processors. In MICRO-54: 54th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO ’21, page 1106–1120,

New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450385572.

doi: 10.1145/3466752.3480062. URL https://doi.org/10.1145/3466752.3480062. 6

[157] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page placement in hybrid

memory systems. In Proceedings of the International Conference on Supercomputing,

ICS ’11, page 85–95, Tucson, Arizona, USA, 2011. ISBN 9781450301022. doi: 10.1145/

1995896.1995911. URL https://doi.org/10.1145/1995896.1995911. 98

[158] Breno Leitao Rodrigo Ceron, Rafael Folco and Humberto Tsubamoto. Online https:

//static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/

153

http://doi.acm.org/10.1145/2830772.2830773
https://doi.org/10.1145/3314221.3314582
https://doi.org/10.1145/3314221.3314582
http://doi.acm.org/10.1145/2872362.2872405
https://github.com/mitosis-project/mitosis-linux/
https://github.com/mitosis-project/mitosis-linux/
http://doi.acm.org/10.1145/1127908.1127915
https://doi.org/10.1145/3466752.3480062
https://doi.org/10.1145/1995896.1995911
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf

BIBLIOGRAPHY

finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf,

2012. 98

[159] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K. John. Rethinking tlb designs

in virtualized environments: A very large part-of-memory tlb. In Proceedings of the

44th Annual International Symposium on Computer Architecture, ISCA ’17, pages 469–

480, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4892-8. doi: 10.1145/3079856.

3080210. URL http://doi.acm.org/10.1145/3079856.3080210. 129

[160] Tudor-Ioan Salomie, Gustavo Alonso, Timothy Roscoe, and Kevin Elphinstone. Appli-

cation level ballooning for efficient server consolidation. In Proceedings of the 8th ACM

European Conference on Computer Systems, EuroSys ’13, pages 337–350, New York,

NY, USA, 2013. ACM. ISBN 978-1-4503-1994-2. doi: 10.1145/2465351.2465384. URL

http://doi.acm.org/10.1145/2465351.2465384. 131

[161] Dipankar Sarma and Paul E. McKenney. Making rcu safe for deep sub-millisecond re-

sponse realtime applications. In Proceedings of the Annual Conference on USENIX An-

nual Technical Conference, ATEC ’04, pages 32–32, Berkeley, CA, USA, 2004. USENIX

Association. URL http://dl.acm.org/citation.cfm?id=1247415.1247447. 18

[162] screen.net. Mapping physical memory directly. https://www.sceen.net/

mapping-physical-memory-directly/. 36

[163] Amazon Web Services. Amazon ec2 instance types. Online https://aws.amazon.com/

ec2/instance-types/, 2020. 99

[164] Riyaj Shamsudeen. Performance tuning: Hugepages in linux. https://blog.pythian.

com/performance-tuning-hugepages-in-linux/. 36

[165] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas. Elastic cuckoo

page tables: Rethinking virtual memory translation for parallelism. In Proceedings

of the Twenty-Fifth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’20, page 1093–1108, New York,

NY, USA, 2020. Association for Computing Machinery. ISBN 9781450371025. doi:

10.1145/3373376.3378493. URL https://doi.org/10.1145/3373376.3378493. 129

[166] Avinash Sodani. Micro keynote: Race to exascale, 2011. https://www.microarch.org/

micro44/files/Micro%20Keynote%20Final%20-%20Avinash%20Sodani.pdf. 3, 75

154

https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
https://static.rainfocus.com/vmware/vmworldus17/sess/1489512432328001AfWH/finalpresentationPDF/SER2343BU_FORMATTED_FINAL_1507912874739001gpDS.pdf
http://doi.acm.org/10.1145/3079856.3080210
http://doi.acm.org/10.1145/2465351.2465384
http://dl.acm.org/citation.cfm?id=1247415.1247447
https://www.sceen.net/mapping-physical-memory-directly/
https://www.sceen.net/mapping-physical-memory-directly/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://blog.pythian.com/performance-tuning-hugepages-in-linux/
https://blog.pythian.com/performance-tuning-hugepages-in-linux/
https://doi.org/10.1145/3373376.3378493
https://www.microarch.org/micro44/files/Micro%20Keynote%20Final%20-%20Avinash%20Sodani.pdf
https://www.microarch.org/micro44/files/Micro%20Keynote%20Final%20-%20Avinash%20Sodani.pdf

BIBLIOGRAPHY

[167] Vijayaraghavan Soundararajan, Mark Heinrich, Ben Verghese, Kourosh Gharachorloo,

Anoop Gupta, and John Hennessy. Flexible use of memory for replication/migration in

cache-coherent dsm multiprocessors. In Proceedings of the 25th Annual International Sym-

posium on Computer Architecture, ISCA ’98, page 342–355, Barcelona, Spain, 1998. ISBN

0818684917. doi: 10.1145/279358.279403. URL https://doi.org/10.1145/279358.

279403. 132

[168] Statista. Volume of data/information created, captured, copied, and consumed

worldwide from 2010 to 2025. https://www.statista.com/statistics/871513/

worldwide-data-created/. x, 2

[169] Guy L. Steele, Jr. Multiprocessing compactifying garbage collection. Commun. ACM,

18(9):495–508, September 1975. ISSN 0001-0782. doi: 10.1145/361002.361005. URL

http://doi.acm.org/10.1145/361002.361005. 131

[170] Darko Stefanović, Kathryn S McKinley, and J Eliot B Moss. Age-based garbage collection.

ACM SIGPLAN Notices, 34(10):370–381, 1999. 131

[171] Indira Subramanian, Clifford Mather, Kurt Peterson, and Balakrishna Raghunath. Im-

plementation of multiple pagesize support in hp-ux. In USENIX Annual Technical Con-

ference, pages 105–119, 1998. 38, 130

[172] Oracle Support. Enable oracle numa support with oracle server. Online https:

//support.oracle.com/knowledge/Oracle%20Cloud/864633_1.html, 2019. 99

[173] JDK Bug System. Support large pages on macOS. https://bugs.openjdk.java.net/

browse/JDK-8233062. 10

[174] Vasily Tarasov, Erez Zadok, and Spencer Shepler. Filebench: A flexible framework

for file system benchmarking. ;login:, 41(1), 2016. URL https://www.usenix.org/

publications/login/spring2016/tarasov. 80

[175] Andrew Theurer. Kvm and big vms. Online https://www.linux-kvm.org/images/5/

55/2012-forum-Andrew-Theurer-Big-SMP-VMs.pdf, 2012. 109, 111, 119

[176] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. XSBench - The

Development and Verification of a Performance Abstraction for Monte Carlo Reactor

Analysis. In PHYSOR 2014 - The Role of Reactor Physics toward a Sustainable Future,

Kyoto. 53, 74, 101

155

https://doi.org/10.1145/279358.279403
https://doi.org/10.1145/279358.279403
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
http://doi.acm.org/10.1145/361002.361005
https://support.oracle.com/knowledge/Oracle%20Cloud/864633_1.html
https://support.oracle.com/knowledge/Oracle%20Cloud/864633_1.html
https://bugs.openjdk.java.net/browse/JDK-8233062
https://bugs.openjdk.java.net/browse/JDK-8233062
https://www.usenix.org/publications/login/spring2016/tarasov
https://www.usenix.org/publications/login/spring2016/tarasov
https://www.linux-kvm.org/images/5/55/2012-forum-Andrew-Theurer-Big-SMP-VMs.pdf
https://www.linux-kvm.org/images/5/55/2012-forum-Andrew-Theurer-Big-SMP-VMs.pdf

BIBLIOGRAPHY

[177] Koji Ueno and Toyotaro Suzumura. Highly scalable graph search for the graph500

benchmark. In Proceedings of the 21st International Symposium on High-Performance

Parallel and Distributed Computing, HPDC ’12, pages 149–160, New York, NY, USA,

2012. ACM. ISBN 978-1-4503-0805-2. doi: 10.1145/2287076.2287104. URL http:

//doi.acm.org/10.1145/2287076.2287104. 53, 74, 101

[178] Rik van Riel and Vinod Chegu. Automatic numa balancing. Online https://www.

linux-kvm.org/images/7/75/01x07b-NumaAutobalancing.pdf, 2014. 98, 101

[179] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum. Operating system

support for improving data locality on cc-numa compute servers. In Proceedings of the

Seventh International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS VII, page 279–289, New York, NY, USA, 1996. Asso-

ciation for Computing Machinery. ISBN 0897917677. doi: 10.1145/237090.237205. URL

https://doi.org/10.1145/237090.237205. 132

[180] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex Ramirez, Avi

Mendelson, Nacho Navarro, Adrian Cristal, and Osman S. Unsal. Didi: Mitigating the

performance impact of tlb shootdowns using a shared tlb directory. In 2011 International

Conference on Parallel Architectures and Compilation Techniques, pages 340–349, 2011.

doi: 10.1109/PACT.2011.65. 17

[181] vMitosis. vmitosis asplos’21 artifact evaluation. https://github.com/

mitosis-project/vmitosis-asplos21-artifact/blob/main/scripts/helpers/

fragment.py, 2021. 75

[182] Carl A. Waldspurger. Memory resource management in VMware ESX server. In 5th

Symposium on Operating Systems Design and Implementation (OSDI 02), Boston, MA,

December 2002. USENIX Association. URL https://www.usenix.org/conference/

osdi-02/memory-resource-management-vmware-esx-server. 49, 126, 129

[183] Mitosis workload BTree. Open source code repository. https://github.com/

mitosis-project/mitosis-workload-btree, 2019. 101

[184] Zi Yan. 1gb pud thp support on x86 64. https://lwn.net/Articles/832881/, 2020.

131

[185] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Nimble page man-

agement for tiered memory systems. In Proceedings of the Twenty-Fourth International

156

http://doi.acm.org/10.1145/2287076.2287104
http://doi.acm.org/10.1145/2287076.2287104
https://www.linux-kvm.org/images/7/75/01x07b-NumaAutobalancing.pdf
https://www.linux-kvm.org/images/7/75/01x07b-NumaAutobalancing.pdf
https://doi.org/10.1145/237090.237205
https://github.com/mitosis-project/vmitosis-asplos21-artifact/blob/main/scripts/helpers/fragment.py
https://github.com/mitosis-project/vmitosis-asplos21-artifact/blob/main/scripts/helpers/fragment.py
https://github.com/mitosis-project/vmitosis-asplos21-artifact/blob/main/scripts/helpers/fragment.py
https://www.usenix.org/conference/osdi-02/memory-resource-management-vmware-esx-server
https://www.usenix.org/conference/osdi-02/memory-resource-management-vmware-esx-server
https://github.com/mitosis-project/mitosis-workload-btree
https://github.com/mitosis-project/mitosis-workload-btree
https://lwn.net/Articles/832881/

BIBLIOGRAPHY

Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’19, page 331–345, Providence, RI, USA, 2019. ISBN 9781450362405. doi:

10.1145/3297858.3304024. URL https://doi.org/10.1145/3297858.3304024. 97

[186] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Translation ranger:

Operating system support for contiguity-aware tlbs. In Proceedings of the 46th Inter-

national Symposium on Computer Architecture, ISCA ’19, pages 698–710, New York,

NY, USA, 2019. ACM. ISBN 978-1-4503-6669-4. doi: 10.1145/3307650.3322223. URL

http://doi.acm.org/10.1145/3307650.3322223. 131

[187] Idan Yaniv and Dan Tsafrir. Hash, don’t cache (the page table). In Proceedings of

the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling

of Computer Science, SIGMETRICS ’16, page 337–350, New York, NY, USA, 2016.

Association for Computing Machinery. ISBN 9781450342667. doi: 10.1145/2896377.

2901456. URL https://doi.org/10.1145/2896377.2901456. 129

[188] Heechul Yun, Renato Mancuso, Zheng Pei Wu, and Rodolfo Pellizzoni. PALLOC: DRAM

bank-aware memory allocator for performance isolation on multicore platforms. In 20th

IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2014,

Berlin, Germany, April 15-17, 2014, pages 155–166, 2014. doi: 10.1109/RTAS.2014.

6925999. URL http://dx.doi.org/10.1109/RTAS.2014.6925999. 37

[189] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page coloring-based

multicore cache management. In Proceedings of the 4th ACM European Conference on

Computer Systems, EuroSys ’09, pages 89–102, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-482-9. doi: 10.1145/1519065.1519076. URL http://doi.acm.org/10.1145/

1519065.1519076. 53

[190] Weixi Zhu, Alan L. Cox, and Scott Rixner. A comprehensive analysis of superpage

management mechanisms and policies. In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), pages 829–842. USENIX Association, July 2020. ISBN 978-1-939133-

14-4. URL https://www.usenix.org/conference/atc20/presentation/zhu-weixi.

130

157

https://doi.org/10.1145/3297858.3304024
http://doi.acm.org/10.1145/3307650.3322223
https://doi.org/10.1145/2896377.2901456
http://dx.doi.org/10.1109/RTAS.2014.6925999
http://doi.acm.org/10.1145/1519065.1519076
http://doi.acm.org/10.1145/1519065.1519076
https://www.usenix.org/conference/atc20/presentation/zhu-weixi

	Acknowledgements
	Abstract
	Publications based on this Thesis
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Benefits of virtual memory
	1.2 The cost of virtual memory
	1.3 Problem statement
	1.4 Contributions of this dissertation
	1.5 Organization of this dissertation

	2 Making Huge Page Allocation Feasible
	2.1 Introduction
	2.2 Background on Physical Memory Management
	2.2.1 Unmovable pages
	2.2.2 Memory allocation
	2.2.3 RCU and deferred objects
	2.2.4 Fragmentation mitigation techniques
	2.2.4.1 Anti-fragmentation
	2.2.4.2 Defragmentation using memory compaction

	2.3 A detailed analysis of fragmentation
	2.3.1 Memory allocation
	2.3.2 The invisibility of hybrid pageblocks
	2.3.2.1 Fragmentation via pollution
	2.3.2.2 LIU migration
	2.3.2.3 Experimental analysis of fragmentation

	2.3.3 Delayed reclamation of deferred objects
	2.3.4 Large memory large problems
	2.3.5 Impact of fragmentation in virtualized systems

	2.4 Understanding and addressing the root cause
	2.4.1 Augmenting fragmentation with unmovability
	2.4.2 Making operating system responsibilities explicit

	2.5 Illuminator: Design and Implementation
	2.5.1 Explicit management of hybrid pageblocks
	2.5.1.1 Minimizing UI by mitigating fragmentation via pollution
	2.5.1.2 Eliminating LIU migration

	2.5.2 Reclaiming pageblocks from the hybrid pool
	2.5.3 Eliminating susceptibility to page locations
	2.5.4 Timely reclamation of deferred objects
	2.5.5 Implementation notes

	2.6 Evaluation
	2.6.1 Experimental setup and workloads
	2.6.2 The cost model for memory compaction
	2.6.3 Huge page allocations with stress-highalloc
	2.6.4 Performance results on bare-metal
	2.6.4.1 Overall performance improvement
	2.6.4.2 Latency and OS jitter
	2.6.4.3 Performance isolation

	2.6.5 Performance in virtualized environments

	2.7 Discussion
	2.8 Summary

	3 Fine-grained Huge Page Management
	3.1 Introduction
	3.2 Motivation
	3.2.1 Address translation overhead vs. memory bloat
	3.2.2 Page fault latency vs. number of page faults
	3.2.3 Huge page allocation across multiple processes
	3.2.4 How to capture address translation overheads?

	3.3 Design and Implementation
	3.3.1 Asynchronous page pre-zeroing
	3.3.2 Managing memory bloat vs. address translation performance
	3.3.3 Fine-grained huge page promotion
	3.3.4 Huge page allocation across multiple processes
	3.3.5 Limitations and discussion

	3.4 Evaluation
	3.4.1 Performance advantages of fine-grained huge page promotion
	3.4.2 Fairness advantages of fine-grained huge page promotion
	3.4.3 Performance in virtualized systems
	3.4.4 Bloat vs. performance
	3.4.5 Fast page faults with async page pre-zeroing
	3.4.6 Performance overheads of HawkEye
	3.4.7 Comparison between Hawk-PMU and HawkEye-G

	3.5 Summary

	4 Leveraging Architectural Support for All Page Sizes
	4.1 Introduction
	4.2 Methodology
	4.3 How useful are 1GB large pages?
	4.3.1 1GB pages in native execution
	4.3.2 1GB pages under virtualized execution
	4.3.3 Importance of using all large page sizes

	4.4 Trident: Dynamic allocation of all page sizes
	4.4.1 Design and implementation
	4.4.1.1 Managing 1GB physical memory chunks
	4.4.1.2 Allocating large pages during page fault
	4.4.1.3 Large page promotion

	4.4.2 Smart compaction

	4.5 Tridentpv: Paravirtualizing Trident
	4.6 Evaluation
	4.6.1 Performance evaluation on bare-metal systems
	4.6.2 Evaluating Trident's design components
	4.6.3 Performance under virtualization

	4.7 Summary

	5 Mitigating NUMA Effect on Address Translation
	5.1 Introduction
	5.2 Analysis of 2D page table placement
	5.2.1 Analysis of thin workloads
	5.2.2 Analysis of wide workloads

	5.3 vMitosis: Design and Implementation
	5.3.1 Design overview
	5.3.2 Page table migration
	5.3.2.1 Page table migration in NV (NUMA-visible) configuration
	5.3.2.2 Page table migration in NUMA-oblivious NO-P and NO-F configurations
	5.3.2.3 Linux/KVM implementation

	5.3.3 Page table replication
	5.3.3.1 ePT Replication
	5.3.3.2 gPT replication in NV (NUMA-visible) configuration
	5.3.3.3 gPT replication in NO-P (NUMA-oblivious paravirtualized) configuration
	5.3.3.4 gPT replication in NO-F (NUMA-oblivious fully virtualized) configuration
	5.3.3.5 Linux/KVM implementation

	5.3.4 Deploying vMitosis

	5.4 Evaluation
	5.4.1 Evaluation with page table migration
	5.4.2 Evaluation with page table replication
	5.4.2.1 Page table replication in a NUMA-visible scenario
	5.4.2.2 Page table replication in a NUMA-oblivious scenario

	5.4.3 Replication vs. migration of page tables
	5.4.4 Memory and runtime overhead of vMitosis
	5.4.5 Summary of results

	5.5 Discussion
	5.5.1 Huge (large) pages
	5.5.2 Shadow page tables

	5.6 Summary

	6 Related work
	7 Conclusion and Looking Forward
	Bibliography

