A Case for Protecting Huge Pages from the Kernel

Ashish Panwar *

Intel Corporation &
Indian Institute of Science

ashish.panwar@csa.iisc.ernet.in

Abstract

Controlling memory fragmentation is critical for leveraging
the benefits of huge page support offered by modern archi-
tectures. The division of free memory into non-contiguous
regions over time restricts huge page allocations in long run.
Compaction is a popular mechanism to recover contiguous
blocks of free memory on demand. However, its success rate
of accumulating free regions at huge page granularity (e.g.,
2MB in x86_64) is low in most situations due to the presence
of unmovable kernel memory. Hence, a prudent page place-
ment algorithm is required to control fragmentation and pro-
tect huge pages against kernel memory allocations, in order
to sustain system performance over long periods of time.

In this work, we explore the interaction of kernel pages
with fragmentation avoidance and recovery mechanism in
Linux. Our analysis shows that stock kernel memory layout
thwarts the progress of memory compaction. Furthermore,
compaction can potentially induce more fragmentation de-
pending on where kernel memory was placed by the under-
lying page allocator. We discuss the scope of optimization in
current Linux framework and show how an effective frag-
mentation management can yield up to 20% performance
improvement and up to 27% energy savings with the help
of additional huge pages.

Keywords Huge pages, Buddy allocator, Anti-fragmentation,
Memory compaction

1. Introduction

Complex and large working sets of modern applications are
known to gain substantial benefits with huge pages [18]. As
a result, robust huge page support is available across gen-
eral purpose processors at different granularity. For example,

*The authors contributed equally for this work.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

APSys ’16, August 04-05, 2016, Hong Kong, Hong Kong

Copyright (© 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4265-0/16/08. ... $15.00

DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2967360.2967371

Naman Patel *

Indian Institute of Science
patel.naman@csa.iisc.ernet.in

K. Gopinath

Indian Institute of Science
gopi@csa.iisc.ernet.in

x86_64 systems support 2MB and 1GB huge pages while
PowerPC facilitates superpages of 64KB, 16MB and 16GB.
When the working set of an application surpasses system
TLB reach, a large proportion of system effort goes into
translating virtual to physical addresses [3]. Huge pages can
minimize this translation cost by mapping large portions of
process address space into a single TLB entry. However, fa-
cilitating allocation of large contiguous blocks is a challenge
for operating systems because of fragmentation [14].

Fragmentation, both internal and external, occurs across
all forms of storage/memory domains (e.g., disks, process
heaps, physical memory). External fragmentation is a sit-
uation where sufficient free resources are available but al-
location request can not be satisfied because of the non-
contiguity of free regions [12]. Internal fragmentation oc-
curs when a larger block than the request size is allocated.
Both results in inefficient utilization of resources and per-
formance/energy loss in many cases. In the context of this
paper, we only talk about external fragmentation in physical
memory at huge page granularity (i.e., unavailability of free
memory regions aligned with huge page size) and refer to it
as fragmentation for simplicity.

Defragmentation (also known as compaction) is a popular
mechanism to recover from fragmentation in long running
systems [2]. However, there are subtle differences in defrag-
menting physical memory as compared to disks or process
heaps. In the latter cases it is relatively easy to copy ob-
jects from one place to another while physical memory can
have significant number of unmovable pages [7]. Operating
systems typically have a large pool of non-pageable kernel
memory objects [[15) [17] which can neither be swapped to
disk nor migrated in memory primarily due to the lack of un-
managed references. Pages backing these objects are pinned
in memory during their lifetime and it is the placement of
these pages on physical address space that decides the de-
gree to which compaction can accumulate large contiguous
regions.

Every kernel page, during its lifetime, prevents its mem-
ory block from being allocated as huge page to user ap-
plications. Hence, facilitating huge page allocations in the
presence of unmovable pages demand different solutions
for controlling fragmentation. It requires protecting contigu-

Algorithm 1 : Kernel Memory Fallback Routine

nr_reserved = reserve_pblock_pages(page)

if nr_reserved >= pblock_nr_pages/2 then
change_pblock_domain(page, KERNEL)

12: end if

13: / * split i f page is large, before returning * /

14: return page

15: else

16: return NULL

17: end if

1: fallback_kernel(request_order)
2: for order = 10 to request_order do
3: if llist_empty(USER, order) then
4: page = get_head_page(USER, order)
5: break
6: end if
7: end for
8: if page then
9:
10:
11:

ous blocks (that constitute huge pages) from kernel mem-
ory allocations. Linux utilizes page clustering based anti-
fragmentation [[L1]] to confine unmovable allocations within
fewer regions. It helps memory subsystem in two ways; de-
laying fragmentation and facilitating easy recovery from it.
However, page clustering suffers badly in its current form
when memory gets divided in smaller blocks. We show that
it happens due to poor page selection in an infrequently tra-
versed path of underlying page allocator.

Interestingly, minimizing the number of blocks occupied
by kernel pages is not sufficient. Our experiments show that
physical location of kernel pages also impacts memory sub-
system and their interference with compaction can actually
exacerbate fragmentation in long running systems.

Our primary contributions in this paper are:

1. Evaluating the impact of different kernel page layouts on
memory fragmentation and compaction.

2. Exploring the scope of optimization in a recent Linux
kernel and benchmarking performance/energy gain of a
refined anti-fragmentation framework with real applica-
tions.

2. Background and Motivation

Linux manages free memory using a variant of binary buddy
allocator in 11 lists i.e., order O to 10 where each order list
links together power of 2 contiguous pages. Furthermore, a
pageblock denotes an order 9 page i.e., a contiguous block
of 512 pages. In the rest of the paper, we refer to pageblock
as pBlock, kernel pages as sysPages and application pages
as usrPages. Fragmentation is dealt with a combination of
avoidance and recovery mechanisms discussed in following
subsections.

busy page [free page
before compaclion

Ih--/-:

list of free pages (target)

list of movable pages (source) |:|._|:|
L T T T T

after compaction

Figure 1: Physical memory before and after compaction.

2.1 Anti-Fragmentation

Linux implements page clustering [11]] to avoid fragmenta-
tion by partitioning physical memory in different regions.
For simplicity, we broadly classify these regions in two do-
mains i.e., kernel and user which are intended to serve sys-
tem and application memory demands respectively. Each do-
main contains a group of pBlock Note that the size of a
pBlock is aligned to the default huge page size of x86_64
i.e., 2MB. More memory can be potentially used to satisfy
huge page allocations if kernel space is restricted to a few
pBlocks. Page clustering attempts to prevent kernel from oc-
cupying large pool of huge pages by placing its memory in
a few pBlocks.

2.2 Memory Compaction

Compaction tries to accumulate small non-contiguous free
regions into larger contiguous regions by migrating pages in
memory. For the purpose of understanding, compaction as
shown in can be thought of as a combination of two scanners:

1. The first one starts at the bottom of memory and prepares
alist of in-use usrPages. We refer to them as source pages
hereafter.

2. The other collects free pages from the top of memory
which we call as target pages.

Once the two scanners meet, source pages are copied
onto target list and their page table references are updated

properly (sce [Figure T).
2.3 Motivation

The real problem with respect to fragmentation appears
when kernel memory starts growing beyond its domain.
When this happens, sysPages need to be allocated from user
domain (we call this event as memory fallback). During fall-
back, the first pageE] from the highest order non-empty buddy
list is selected for allocation and free pages from its pBlock
are stolen for future kernel memory requests. Algorithm-1

Note that a pBlock is a contiguous region of physical pages. However,
different pBlocks in a domain need not be contiguous.

2In long running systems, free lists get randomized and arbitrary pages
are found at the head of free lists. We call the first page as random in the
rest of the paper.

800 T

700 I Default [____]OPBS

(2]

X

S 600

o

m 500

o

el

B 400

f=4 L

£ 300

3 200
100

"0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (seconds)
Figure 2: Tainted pBlock formation rate with default and OPBS
(explained in Section 4.2) algorithms on 2GB physical memory.

shows the code snippet for kernel memory fallback. How-
ever, arandom page selection results in an inefficient realiza-
tion of page clustering causing interleaving of sysPages and
usrPages on majority of pBlocks in long run. Compaction
also suffers due to this interleaving as pBlocks containing
sysPages can not be freed entirely. Over a period of time,
the system finds it difficult to provide applications with huge
pages. In the rest of the paper, we refer to pBlocks containing
both usrPages and sysPages as tainted pBlocks.

shows the rate of tainted pBlock formation with
default kernel fallback routine as compared to a modified al-
gorithm (referred to as OPBS in the figure which is our op-
timal version). The modified algorithm is designed to select
a pBlock that can reserve maximum pages during fallbacks.
Our analysis shows that there is sufficient scope for opti-
mizing fallbacks for controlling the layout of kernel pages.
Moreover, it is a rarely executed code path and hence such
optimizations can be achieved without sacrificing the overall
performance of memory allocator.

3. Defining the Problem Experimentally

Many real-world applications which use large amount of
kernel memory like database applications [22] and kernel
compilation induce fragmentation. We run kernel builds for
analyzing Linux fragmentation management framework on
a 4GB system. A detailed analysis of our experiments is
discussed below:

Degree of Pollution | # user pBlocks

<1 112 (8%)
1-2 89 (7%)
2-4 241 (18%)

4-10 781 (58%)
>10 121 (9%)
>25 4

>40 0

Table 1: Distribution of sysPages across all user pBlocks. Note that
more than 90% pBlocks contain less than 10% sysPages.

3.1 Issues with Anti-Fragmentation

Anti-fragmentation works well in terms of restricting kernel
memory within a few pBlocks as long as kernel memory
is being allocated from its respective domain or fallbacks
are able to reserve relatively large pBlocks. However, its
behavior is not sustainable in busy systems running for long
periods of time for following reasons:

1. A random pBlock selection during fallback is likely to
result in insufficient pages getting reserved, especially
when free pages are not available in high-order buddy
lists. It causes consecutive kernel allocations to fallback
on different user pBlocks.

2. When fallbacks reserve pages without updating the pBlock
ownership (i.e., if condition fails on line 10 in Algorithm-
1), the pBlock gets divided between two domains. While
its free pages are allocated as kernel memory, pages that
were already allocated from it are freed back to the user
domain.

Such behavior can cause a large number of pBlocks con-
taining sysPages in long run. Note that none of the pBlocks
containing sysPages can be used as huge page by user ap-
plications, irrespective of the amount of free memory avail-
able in them. Hence, we can measure the impact of kernel
page placement on memory fragmentation by calculating the
number of tainted pBlocks. Further, we define for each user
pBlock the degree of pollution as the fraction of its memory
allocated as sysPages. shows the degree of pollution
for all user tainted pBlocks at the end of two successive ker-
nel builds with 4GB physical memory. We find more than
80% (1345 out of 1667) user pBlocks being tainted while
majority of them are tainted because of the presence of a few
sysPages (24 pBlocks contain only 1 and more than 90% of
pBlocks contain less than 10% sysPages). It is evident from
Table 1|that current anti-fragmentation framework of Linux
is inefficient with respect to restricting kernel pages within
few pBlocks.

3.2 Issues with Memory Compaction

Memory compaction, in its current form, does not interact
with the buddy allocatoﬂ while collecting target pages. It
scans memory from the upper end and prepares a list of free
pages irrespective of memory domains. Our observations
indicate that its ignorance of anti-fragmentation is actually a
source of exacerbated fragmentation in long running systems
for following reasons:

e If source pages are selected from pBlocks containing
sysPages, free regions will not be accumulated at huge
page granularity.

3Note that the buddy allocator can not help much when most pBlocks
contain sysPages. It is the primary reason why compaction does not get
target pages via the buddy allocator.

[Default IS KML I KMU-1 . KMU-2

=)

o
©

o
i

o
N

Unusable free space index
o
[=2]

o

7 8
Order

Figure 3: Unusable free space index (lower is better) with different
kernel memory arrangements.

o If target pages are selected from pBlocks belonging to
kernel domain, it will constrict free space in kernel do-
main. It is more likely to cause future kernel memory re-
quests to fallback on user pBlocks.

To investigate and validate the properties discussed above,
we use two variants of an array-based bank buddy allocator
[20], KML (kernel memory lower) and KMU (kernel mem-
ory upper) for placing sysPages towards the lower and upper
end of memory respectively and measure the effectiveness
of memory compaction. We expect following behavior from
the two variants:

¢ In KML, sysPages are aligned towards the lower end of
memory while pBlocks towards the upper end belong to
user applications. Although pages can be allocated arbi-
trarily under memory pressure (depending on the state
of free memory), bulk of kernel pages gets placed to-
wards the lower end by default. Hence, compaction can
not produce free huge pages since source pages get se-
lected from pBlocks containing sysPages in KML.

e In KMU, since source pages are selected from user
pBlocks, it should be relatively easy to free contiguous
regions for immediate use. However, target pages come
from kernel pBlocks which should result in exacerbated
fragmentation even for a few kernel memory allocations
after compaction.

We can measure the success of memory compaction using
the unusable-free-space index [11]], for different memory
block sizes as follows -

. TotalFree — Y """ 2'k;
Fu(] = g
TotalFree

D

where TotalFree is the number of free pages, j is the order
of desired memory block size, max is the largest allocation
order and k is the number of free blocks of order i. F(j) es-
sentially represents the fraction of free memory that cannot
be used to satisfy a memory request of order j. For exam-
ple, a value of O means that any free block can be used for
a particular request and hence a lower value is desirable for

Fu().

We invoke full memory compaction via proc interface
after finishing kernel compilation with KML, KMU and
default kernel and measure the unusable-free-space index.
While KML was not able to accumulate any block greater
than order 7, KMU performed better than the default kernel.
‘We monitor the KMU configuration a little longer after com-
paction is finished to observe its long term consequences.
Though KMU performed better than the other two variants
at the end of memory compaction, the unusable free space
index reaches almost 1 for all memory blocks (greater than
order 5) in a short period of time which is worse than the
other two from a long term perspective. shows the
unusable free space index across all configurations. Note that
KMU-1 and KMU-2 represents the KMU configuration im-
mediately and some time after compaction. The experiments
confirm our observations that the physical location of sys-
Pages plays an important role in determining the success of
memory compaction.

Another observation comes from a different configuration
of KML, where we forced kernel memory to fall aggres-
sively towards the lower end of memory using page migra-
tion. We observed that despite the tainted pBlock count be-
ing very low, the unusable-free-space index for huge pages
was still very high at the end of our test. It indicates that min-
imizing the number of tainted pBlocks is necessary but not a
sufficient condition for controlling fragmentation.

The complex interconnection among memory compaction,
anti-fragmentation and the layout of kernel pages makes
fragmentation a challenging problem. While effective anti-
fragmentation and defragmentation are important within
their disciplines, a cooperative fragmentation management is
required for a robust huge-page friendly memory manager.
Unfortunately, it is not possible for us to cover all related
aspects in this context. Hence, we focus on improving anti-
fragmentation alone in the rest of the paper.

4. Optimizing Anti-Fragmentation

Facilitating huge page allocations on demand is difficult as
long as kernel pages are present in majority of pBlocks.
Hence, improving the effectiveness of page clustering with
an optimized anti-fragmentation solution is the first and most
critical requirement to control fragmentation at huge page
granularity. We discuss few optimizations to improve page
clustering in Linux kernel (version 4.1.13) in the following
subsections.

4.1 Active Anti-Fragmentation

Active anti-fragmentation (AAF), inspired by Joonsoo Kim
[[L3]], has been discussed in the Linux community as a po-
tential optimization for improving fragmentation framework
of the Linux kernel. The idea behind AAF is to always re-
serve an entire pBlock during kernel memory fallbacks. If
there are usrPages already allocated from it, they are moved
elsewhere in memory while reserving the pBlock. This page

Algorithm 2 : Adaptive pBlock Selection

1: fallback_kernel _APBS(request_order)
2: ...
if level = Low then

page = get_head_page(USFER, request_order)
else if level = Medium then

page = get_random_page(USER, request_order)
else if level = High then

page = get_page AAF(USER, request_order)
9: else /* Critical */
10: page = get_page_RPBS(USER, request_order)
11: end if

i A A s

13: return page

migration in AAF can potentially stall applications as pages
being migrated cannot be accessed, also it can induce more
TLB shootdowns due to page mapping being modified. It is
prone to performance slowdown when workloads are aggres-
sive (could be moving pages potentially at every request).

4.2 Optimal pBlock Selection

In section 2, we discussed a modified algorithm for select-
ing a pBlock which reserves maximum pages during fallback
without migrating any pages. We call it optimal pBlock se-
lection (OPBS) and its rate of pBlock mixing is shown in
In OPBS, all eligible pBlocks are scanned during
fallback to select the optimal pBlock. Even though the cost
of scanning pBlocks is high, following optimizations make
fallback a rarely executed code path in practice:

® The kernel is a highly organized system and its mem-
ory footprint is very low compared to user applications.
Hence, its contribution is a tiny fraction of all memory
requests in the system.

e Slab allocators [3]] have been implemented on top of the
buddy allocator to serve memory requests of kernel ob-
jects. The buddy allocator handles kernel memory allo-
cations only when slab pages get exhausted.

e Memory domains tend to balance their size depending on
the workloads. Hence, the majority of kernel allocations
come from kernel domain.

We observed less than 1% memory requests being served
through fallbacks for more than 30 minutes of profiling for a
kernel memory intensive workload. Hence careful optimiza-
tions here are unlikely to cause dramatic performance degra-
dation in the overall performance of page allocator.

4.3 Adaptive pBlock Selection

In adaptive pBlock selection (APBS), we classify the state
of memory with respect to fragmentation in four levels (i.e.,
low, medium, high, critical) for implementing kernel fall-
back routine in Adaptive pBlock Selection (APBS). Note
that the buddy allocator starts lookup from the highest-order

free lists during fallbacks (line 2 in Algorithm 1). Hence the
level can be determined at runtime, depending on the order
of the page being selected. We classify order 9 to 10 as low,
7 to 8 as medium, 4 to 6 as high and rest as critical frag-
mentation levels. Different callbacks used for each level are
discussed below:

e Low: Memory is considered to be safe in this state as full
pBlocks can be reserved during fallbacks hence default
pBlock selection is sufficient.

e Medium: The best out of four random pBlocks is selected
and used for allocation at this level.

e High: Along with reserving free pages, we also invoke
AAF to move all usrPages out of the selected pBlock and
add it to kernel domain.

e Critical: Fragmentation is severe and free memory is di-
vided is small regions. Invoking AAF at this point incurs
non-negligible overhead in the system. Hence, we use a
controlled version of OPBS at this level to select the best
of 64 pBlocks. We call it as Regulated pBlock Selection
(RPBS).

Algorithm 2 shows the sample code snippet for APBS.
At the end of two successive kernel builds, we find the num-
ber of tainted pBlocks in APBS configuration to be approxi-
mately 52% of the default kernel. OPBS further reduces the
tainted pBlock count by 20%. The effectiveness of OPBS
and APBS clearly shows that current anti-fragmentation suf-
fers due to poor page selection during fallback in Linux.
However, OPBS benchmarking reports some overhead in the
runtime performance during kernel builds (2%-3% in sys-
tem time). Our initial evaluation indicates that APBS is a
reasonable fit for most systems (tested upto 16GB physical
memory) in terms of restricting kernel memory within fewer
pBlocks without noticeable runtime overhead (less than 1%).
Note that the implementation of APBS is scalable for large
memory systems as well since RPBS never scans memory
beyond 64 pBlocks.

5. Evaluation
5.1 Test Setup

Our primary setup is a laptop equipped with an Intel®
Broadwell processor with 2*2 cores operating at 2.3GHz
and LLC (Last Level Cache) size of 3MB. The size of phys-
ical memory varies between 2GB and 4GB depending on the

Kernel # Tainted pBlocks Unusable Free Space Index
Default 1683 0.61

AAF 134 0.24

OPBS 508 0.21

APBS 874 0.31

Table 2: Unusable free space index for huge pages (order 9) and
the number of tainted pBlocks with different kernels.

Benchmark TLB Miss Ratio
W/OHP W HP Reduction
Canneal 6.46% 0.18% 97%
Stream 0.07% 0.02% 72%

Table 3: TLB miss ratio for canneal and stream with (W HP) and
without huge pages (W/O HP).

!
[stream

!
I Canneal

T
I Dcfault

80

60

N
S
T

Normalized Energy Consumption

n
o

LLC
Component

Figure 4: Normalized energy consumption of stream and canneal
with additional huge pages.

benchmarks. cpuid reports L1 d-TLB and i-TLB supporting
64 entries for 4KB and 4 entries for 2MB pages while L2
contains 1536 entries for both 4KB and 2MB pages. The
system provides robust support for measuring system-wide
energy consumption across CPU cores, package (cores +
LLC) and DRAM through hardware counters, which can be
accessed via RAPL interface [19] available in perf.

5.2 Unusable Free Space Index

depicts the number of tainted pBlocks as well as the
unusable free space index for huge pages (i.e., order 9) on
our system with 4GB physical memory. Note that though
AAF performed better in terms of restricting kernel memory
within fewer pBlocks, it is OPBS that wins for unusable free
space index. Further analysis revealed that it was indeed hap-
pening due to the conflict between memory compaction and
anti-fragmentation as AAF pBlock selection was aligned to-
wards KML configuration discussed in Section 3 during this
test. It also confirms our earlier observation that minimizing
tainted pBlock count is not sufficient for controlling frag-
mentation. APBS performs reasonably well in term of both
restricting fallbacks to few pBlocks as well as reducing the
unusable free space index.

5.3 Benchmarking Huge Page Allocations

In an another experiment, we use stress-highalloc from
mmtests [9]] for benchmarking the success rate of huge page
allocations under rigorous memory pressure on a 3GB sys-
tem. It attempts to allocate huge pages three times, after
severely fragmenting physical memory with kernel compi-
lation. In the first attempt, when the success rate of default
kernel was 0%, APBS was able to allocate 7% of system
memory as huge pages. When system was at rest in the last
attempt, APBS was able to satisfy 37% of huge page allo-

Runtime (milliseconds) Throughput (ops/m)
Benchmark v yp WHP Gain W/OHP WHP Gain
stream 1549 1237 20% X X X
canneal 90360 78940 13% X X X
compress X X X 127 134 5.5%
crypto.rsa X X X 204 214 4.9%
derby X X X 266 282 6.0%
sunflow X X X 49 51 4.0%

Table 4: Throughput and runtime performance gain (wherever ap-
plicable) for stream, canneal and a few SPECjvm2008 benchmarks
with additional huge pages.

cations as compared to 13% of default kernel. Additional
success rate of APBS was found to be varying between 25%
and 30% with 4GB physical memory as well.

5.4 Performance/Energy Measurement

25% additional success rate yields more than 450 huge pages
on a 4GB system. We benchmark the benefits of these pages,
using libhugetlbfs library support available for Linux sys-
tems, with some real applications. 450 huge pages were re-
served before running the test applications which include
stream [16], canneal (from PARSEC benchmark suite [4]])
and a few SPECjvm2008 [1]] benchmarks.

We measure the impact of additional huge pages on the
system TLB with canneal and stream benchmarks. TLB miss
ratio for both applications and reduction in TLB miss ratio
with huge pages is shown in Interestingly, huge
pages reduce TLB miss rate of canneal by up to 97% and up
to 72% for stream. Reduced TLB load ultimately results in
improved performance and energy savings, as system spends
less time in translating virtual to physical addresses. The
runtime and throughput gains are shown in Stream
reports up to 20% reduction in runtime with default input
array size, while canneal benefits up to 13% with native
input set. Throughput gains for SPECjvm applications are
also substantial (up to 6%).

shows normalized energy savings across cores,
LLC and DRAM for our test applications. Our analysis
shows energy gains to be more significant as compared to
performance, which further adds to the motivation for bet-
ter fragmentation management. For example, a performance
gain of 20% in the case of stream translates into 27% en-
ergy reduction. Further analysis shows that both run-time
overhead and energy cost of accumulating huge pages is less
than 2% for these benchmarks. For long-running applica-
tions, the cost of page migration turns out to be insignificant
compared to the overall savings.

6. Related Work

Navarro [18] proposed a reservation based scheme to support
huge pages. Their approach is to restore fragmentation rather
than preventing it beforehand, thus incurring management
overheads. The approach is also unable to handle compile
based workloads and is easily defeated in short time span.

Applications with fewer kernel memory will work well with
their approach but fails miserably with workloads having
larger kernel footprint.

Gorman [10] proposed a scheme to group pages based on
their mobility type to facilitate easy recovery of huge pages
in a fragmented system. Gorman also proposed a contiguity
aware page reclamation algorithm to free memory from huge
page aligned regions. While the approach works well when
fragmentation is low, it fails to recover huge pages once
the system is severely fragmented. J. Kim [14] presented
a proactive anti-fragmentation approach that groups pages
with the same lifetime, and stores them in fixed-size con-
tiguous regions. The regions are reused by subsequent appli-
cations when a process gets killed. However, their approach
is limited to mobile systems where killing an application is
considered reasonable to recover from memory pressure. In
general purpose computers their approach is not practical as
killing a process is unacceptable to reclaim memory.

7. Conclusion

In this paper, we discussed the interaction of kernel page
placement with memory compaction and explored some op-
timizations with respect to controlling fragmentation at huge
page granularity. We also evaluated the benefits of huge
pages with real applications. However, memory fragmen-
tation is far from a solved problem yet and more sophisti-
cated solutions need to be developed for a huge page friendly
memory manager. A few potential solutions could be op-
timizing the existing anti-fragmentation and memory com-
paction framework. Reevaluating kernel design itself against
its inability to control fragmentation [6] is another viable op-
tion (for example, redesigning kernel to facilitate movable
kernel pages [8] is an interesting topic on its own). Recent
research (i.e., Prudence [21]]) reports some interesting op-
timizations in the kernel memory allocators to control its
memory footprint which could prove to be vital for fighting
with memory fragmentation.

Acknowledgments

We would like to take this opportunity to thank our shepherd
Prof. Gernot Heiser and the anonymous reviewers for giving
us valuable feedback on the paper. We would also like to
thank Aravinda Prasad, Sandeep Kumar and Priyanka Singla
for their help in improving the quality of the paper.

References

[1] Specjvm2008, 2008. URL https://www.spec.org/
jvm2008/. https://www.spec.org/jvm2008/.

[2] V. Babka. Fighting physical memory fragmentation with mem-
ory compaction, 2014. URL http://labs.suse.cz/vbabka/
compaction.pdf| http:/labs.suse.cz/vbabka/compaction.pdf.

[3] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M.
Swift. Efficient virtual memory for big memory servers.

In Proceedings of the 40th Annual International Symposium

on Computer Architecture, ISCA °13, pages 237-248, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2079-5. doi:
10.1145/2485922.2485943. URL http://doi.acm.org/10.
1145/2485922.2485943|

[4] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[5] J. Bonwick et al. The slab allocator: An object-caching kernel
memory allocator. In USENIX summer, volume 16. Boston,
MA, USA, 19%4.

[6] J. Corbet. Slab defragmentation, 2007. URL https://lwn.
net/Articles/236108/, https://lwn.net/Articles/236108/.

[7] J. Corbet. Memory compaction, 2010. URL https://lwn.
net/Articles/368869/. https://lwn.net/Articles/368869/.

[8] J. Corbet. Making kernel pages movable,
2015. URL https://lwn.net/Articles/650917/.
https://lwn.net/Articles/650917/.

[9] M. Gorman. Mmtests: Benchmarking framework primarily
aimed at linux kernel testing. URL https://github.com/
gormanm/mmtests| https:/github.com/gormanm/mmtests.

[10] M. Gorman and P. Healy. Supporting superpage allocation
without additional hardware support. In Proceedings of the 7th
international symposium on Memory management, pages 41-50.
ACM, 2008.

[11] M. Gorman and A. Whitcroft. The what, the why and the
where to of anti-fragmentation. In Proceedings of the 2006
Ottawa Linux Symposium, OLS *06, pages 369-384.

[12] M. Gorman and A. Whitcroft. Supporting the allocation of
large contiguous regions of memory. In Linux Symposium, page
141, 2007.

[13] J. Kim. mm: support active anti-fragmentation algorithm,
2015. URL https://1kml.org/lkml/2015/4/27/94.
https://lkml.org/lkm1/2015/4/27/94.

[14] S.-H. Kim, S. Kwon, J.-S. Kim, and J. Jeong. Controlling
physical memory fragmentation in mobile systems. In Proceed-
ings of the 2015 International Symposium on Memory Manage-
ment, ISMM 15, pages 1-14, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3589-8. doi: 10.1145/2754169.2754179.
URL http://doi.acm.org/10.1145/2754169.2754179|

[15] J. Mauro and R. McDougall. Solaris Internals (2nd Edition).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006. ISBN
0131482092.

[16] J. D. McCalpin. Memory bandwidth and machine balance
in current high performance computers. [EEE Computer
Society Technical Committee on Computer Architecture (TCCA)
Newsletter, pages 19-25, Dec. 1995.

[17] M. K. McKusick and G. V. Neville-Neil. The Design and
Implementation of the FreeBSD Operating System. Pearson
Education, 2004. ISBN 0201702452.

[18] J. Navarro, S. Iyer, P. Druschel, and A. L. Cox. Practical,
transparent operating system support for superpages. In 5th
Symposium on Operating System Design and Implementation
(OSDI 2002), Boston, Massachusetts, USA, December 9-
11, 2002, 2002. URL http://www.usenix.org/events/
0sdi0O2/tech/navarro.html,

https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/
http://labs.suse.cz/vbabka/compaction.pdf
http://labs.suse.cz/vbabka/compaction.pdf
http://doi.acm.org/10.1145/2485922.2485943
http://doi.acm.org/10.1145/2485922.2485943
https://lwn.net/Articles/236108/
https://lwn.net/Articles/236108/
https://lwn.net/Articles/368869/
https://lwn.net/Articles/368869/
https://lwn.net/Articles/650917/
https://github.com/gormanm/mmtests
https://github.com/gormanm/mmtests
https://lkml.org/lkml/2015/4/27/94
http://doi.acm.org/10.1145/2754169.2754179
http://www.usenix.org/events/osdi02/tech/navarro.html
http://www.usenix.org/events/osdi02/tech/navarro.html

[19] J. Pan. Rapl (running average power limit) driver,
2013. URL https://lwn.net/Articles/545745/.
https://lwn.net/Articles/545745/.

[20] A. Panwar and K. Gopinath. Towards practical page
placement for a green memory manager. In 22nd IEEE
International Conference on High Performance Computing,
HiPC 2015, Bengaluru, India, December 16-19, 2015, pages
155-164, 2015. doi: 10.1109/HiPC.2015.42. URL http:
//dx.doi.org/10.1109/HiPC.2015.42.

[21] A. Prasad and K. Gopinath. Prudent memory reclamation in
procrastination-based synchronization. In Proceedings of the
Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
’16, pages 99-112, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4091-5. doi: 10.1145/2872362.2872405. URL
http://doi.acm.org/10.1145/2872362.2872405,

[22] R. Shamsudeen. Performance tuning: Hugepages
in linux, 2008. URL https://www.pythian.com/
blog/performance-tuning-hugepages-in-linux/,
https://www.pythian.com/blog/performance-tuning-hugepages-
in-linux/.

https://lwn.net/Articles/545745/
http://dx.doi.org/10.1109/HiPC.2015.42
http://dx.doi.org/10.1109/HiPC.2015.42
http://doi.acm.org/10.1145/2872362.2872405
https://www.pythian.com/blog/performance-tuning-hugepages-in-linux/
https://www.pythian.com/blog/performance-tuning-hugepages-in-linux/

	Introduction
	Background and Motivation
	Anti-Fragmentation
	Memory Compaction
	Motivation

	Defining the Problem Experimentally
	Issues with Anti-Fragmentation
	Issues with Memory Compaction

	Optimizing Anti-Fragmentation
	Active Anti-Fragmentation
	Optimal pBlock Selection
	Adaptive pBlock Selection

	Evaluation
	Test Setup
	Unusable Free Space Index
	Benchmarking Huge Page Allocations
	Performance/Energy Measurement

	Related Work
	Conclusion

