
HawkEye: Efficient Fine-grained OS Support for Huge Pages
Ashish Panwar1, Sorav Bansal2, K. Gopinath1

1Indian Institute of Science, 2Indian Institute of Technology Delhi

OS CHALLENGES
Huge pages naturally induce:
• High allocation latency (page zeroing)
• Memory bloat (internal fragmentation)
• Perf constraints due to fragmentation [2]
• Fairness challenges in resource allocation

Fundamental conflicts across optimizations:
• Memory bloat vs. performance
• Latency vs. the number of page faults

HAWKEYE
Data driven approach for automated operating
system support for huge pages.
Key optimizations [2]:
• Asynchronous page pre-zeroing
• Content deduplication based bloat recovery
• Access pattern based (fine-grained) allocation
• Fairness driven by performance counters

Resolves fundamental conflicts!

BACKGROUND AND MOTIVATION

Bloat vs. performance: Partially used VA regions.

Virtual memory

Physical memory

huge page mapping

Figure 1: Internal fragmentation

Synchronous vs. asynchronous
• Synchronous huge page allocation (Linux

THP): high performance and high bloat
• Utilization threshold-based allocation (Ingens

[1]): tunable bloat vs. performance

0
8

16
24
32
40
48

1
101

201
301

401
501

601
701

801
901

1001
1101

1201
1301

1401
1501

1601

RS
S 

(G
B)

Time (seconds)

Linux Ingens HawkEye

out-of-memory successout-of-memory success

P1

P2 P3

Figure 2: Resident Set Size (RSS) of Redis server across 3
phases: P1 (insert), P2(delete) and P3(insert).

• Manual tuning is a hard problem.
• Sub-optimal settings risk out-of-memory!

Latency vs. the number of page faults: Page zero-
ing contributes to high allocation latency.
Current state-of-the-art:
• Synchronous allocation (Linux THP): during

page fault (high latency, fewer page faults)
• Asynchronous allocation (Ingens): in the back-

ground (low latency, high number of page
faults)

Hard to get the best of both worlds!

Memory fragmentation External fragmentation
limits huge page allocations.
Defragment memory and promote huge pages in
the background.
Maximizing performance with limited contiguity:
• Key: Identify most profitable candidates
• Coarse-grained: inter-process selection (impor-

tant for fair distribution of memory contiguity)
• Fine-grained: intra-process selection

• Current systems favor opposite ends of the de-
sign spectrum for tradeoffs involved in OS-
based huge page management

• HawkEye breaks the fundamental tension with
adaptive policies based on runtime characteris-
tics of the system

Low Memory Pressure High Memory Pressure

1. Fewer Page Faults 
2. Low­latency Allocation 
3. High Performance 

1. High Memory Efficiency 
2. Efficient Huge Page Promotion 
3. Fairness  

Figure 3: Ideal OS design objectives

DESIGN AND IMPLEMENTATION

9
8
7
6
5
4
3
2
1
0

B1

B2

B3 B4

B
9
8
7
6
5
4
3
2
1
0

C1

C3

C5

C

C4

C29
8
7
6
5
4
3
2
1
0

access_map

A1

A2 A3

A

or
de

r o
f p

ro
m

ot
io

n

ho
t-
re
gi
on
s

co
ld
-r
eg
io
ns

access_map access_map

Figure 4: A sample representation of access_map

Dealing with latency:
• Pages zero-filled in the background
• Non-temporal writes (avoid cache pollution)
• Both aggressive & low latency allocation
• What about memory bloat?

Dealing with bloat:
• Unused base pages remain zero-filled
• Scan to detect zero-filled allocations
• Typically scanning a few bytes is enough
• Dedup zero-filled pages (same page merging)
• Automated bloat vs. perf management

67.5
55.4

115.5

3.9 2.8 1.2 1 6.63
27.4

9.11
0

30

60

90

120

di
st

an
ce

 (b
yt

es
)

Figure 5: Avg dist to first non-zero byte in 4KB pages

Fine-grained intra-process allocation:
• Crucial under memory fragmentation
• Periodic page table access-bit tracking
• access-coverage: # base pages accessed per sec

(profitability index of huge page promotion)
• access_map: Prioritize (arrange) promotion

candidates based on access_coverage
• Yields higher profit per huge page allocation

0

10

20

30

40

50

1 61 121 181 241 301 361 421 481 541
M

M
U

 O
ve

rh
ea

d 
(%

)

Time (seconds)

Linux HawkEye-PMU HawkEye-G Ingens

Figure 6: MMU overhead over time for XSBench

Fair inter-process allocation:
• Identifying sensitivity: Profile hardware per-

formance counters (low cost, precise!)
• Treat MMU overhead as a system overhead
• Policy: Distribute MMU overhead equally
• Implementation: Prioritize promotion for

the process with highest MMU overhead
(HawkEye-PMU)

• Generalized version based on access_map
alone (HawkEye-G), important for VMs

 0

 128

 256

 384

 512

1GB 2GB 3GB 4GB 5GB 6GB

ac
ce

ss
-c

o
v

er
ag

e

Virtual Address Space

Figure 7: Access-coverage across XSBench VA space

RESULT HIGHLIGHTS
• 14× faster VM initialization
• 1.26× higher throughput (Redis PUTs)
• Up to 44× higher profit per promotion
• 5%–50% performance improvement in bare-

metal (even higher under virtualization)
• Compliments memory ballooning

REFERENCES
[1] "Coordinated and Efficient Huge Page Man-
agement with Ingens", Y. Kwon, H. Yu, S. Peter,
C. J. Rossbach and E. Witchel. OSDI 2016.
[2] "Making Huge Pages Actually Useful", A.
Panwar, A. Prasad, K. Gopinath, ASPLOS 2018.
[3] HawkEye source is available at:
https://github.com/apanwariisc/HawkEye


