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OS Challenges
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❑ Complex trade-offs

• Memory bloat vs. performance

• Page fault latency vs. the number of page faults

❑ Challenges due to (external) fragmentation
• How to leverage limited memory contiguity

• Fairness in huge page allocation
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Internal fragmentation
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Bloat vs. performance
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▪ Find a page

pre4-KB



22

▪ Find a page, zero-fill

pre zero-fill post4-KB
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▪ Find a page, zero-fill, map

pre zero-fill post4-KB
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Latency vs. # page faults
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FreeBSD Linux

Memory bloat Low High

Performance Low High

Allocation latency Low High

# page faults High Low

conservative vs. aggressive

Tradeoff-1:

Tradeoff-2:

Current systems favor opposite ends of the design spectrum

• FreeBSD is conservative (compromise on performance)

• Linux is throughput-oriented (compromise on latency and bloat)



Ingens (OSDI’16)

34

▪ Asynchronous allocation

• Huge pages allocated in the background

▪ Utilization-threshold based allocation

• Tunable bloat vs. performance

• Adaptive based on memory pressure

▪ Fairness driven by per-process fairness metric

• Heuristic based on past behavior
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▪ Asynchronous allocation

• Huge pages allocated in the background

▪ Utilization-threshold based allocation

• Tunable bloat vs. performance

• Adaptive based on memory pressure

▪ Fairness driven by per-process fairness metric

• Heuristic based on past behavior

low latency

too many page faults

manual

weak correlation with 
page walk overhead



Current state-of-the-art
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FreeBSD Linux Ingens

Memory bloat Low High Tunable

Performance Low High Tunable

Allocation latency Low High Low

# page faults High Low High

Tradeoff-1:

Tradeoff-2:

▪ Hard to find the sweet-spot for utilization-threshold in Ingens

• Application dependent, phase dependent



HawkEye
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Key Optimizations
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➢ Asynchronous page pre-zeroing[1]

➢ Content deduplication based bloat mitigation

➢ Fine-grained intra-process allocation

➢ Fairness driven by hardware performance counters

[1] Optimizing the Idle Task and Other MMU Tricks, OSDI'99



Asynchronous page pre-zeroing
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▪ Pages zero-filled in the background

▪ Potential issues:

• Cache pollution – leverage non-temporal writes

• DRAM bandwidth consumption – rate-limited

o Limit CPU utilization (e.g., 5%)



Asynchronous page pre-zeroing
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Enables aggressive allocation with low latency

✓ 13.8x faster VM spin-up

✓ 1.26x higher throughput (Redis)
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Mitigating bloat
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Mitigating bloat
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▪ Observation: Unused base pages remain zero-filled

▪ Identify bloat by scanning memory

▪ Dedup zero-filled base pages to remove bloat

Virtual memory

Physical memory

huge page mapping

unused

zero-filled



Mitigating bloat
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Mitigating bloat
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✓ Automated "bloat vs. performance" management
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FreeBSD Linux Ingens HawkEye

Memory bloat Low High Tunable Automated

Performance Low High Tunable Automated

Allocation latency Low High Low Low

# page faults High Low High Low

Tradeoff-1:

Tradeoff-2:



Fine-grained (intra-process) allocation
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▪ Maximizing performance with limited contiguity



Fine-grained (intra-process) allocation
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hot regions

access-coverage: # base pages accessed per second

❖ A good indicator of TLB-contention due to a region

▪ Maximizing performance with limited contiguity
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Fine-grained (intra-process) allocation
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access_map

▪ Track access-coverage (access_map)

▪ Allocate in the sorted order

(top to bottom)

✓ Yields higher profit per allocation



Fine-grained (intra-process) allocation
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Fine-grained (intra-process) allocation
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Fair (inter-process) allocation
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▪ Prioritize allocation to the process with highest 

expected improvement

▪ How to estimate page walk overhead

• Profile hardware performance counters

• Low cost, accurate!



Fair (inter-process) allocation
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Summary
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▪ OS support for huge pages involves complex tradeoffs

▪ Balancing fine-grained control with high performance

▪ Dealing with fragmentation for efficiency and fairness
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▪ OS support for huge pages involves complex tradeoffs

▪ Balancing fine-grained control with high performance

▪ Dealing with fragmentation for efficiency and fairness

HawkEye: Resolving fundamental conflicts
for huge page optimizations

https://github.com/apanwariisc/HawkEye

https://github.com/apanwariisc/HawkEye
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