
vAttention: Dynamic Memory Management for
Serving LLMs without PagedAttention

Ramya Prabhu
Microsoft Research
Bengaluru, India

Ajay Nayak∗
Indian Institute of Science

Bengaluru, India

Jayashree Mohan
Microsoft Research
Bengaluru, India

Ramchandran Ramjee
Microsoft Research
Bengaluru, India

Ashish Panwar
Microsoft Research
Bengaluru, India

Abstract
PagedAttention is a popular approach for dynamic memory
allocation in LLM serving systems. It enables on-demand allo-
cation of GPU memory to mitigate KV cache fragmentation
— a phenomenon that crippled the batch size (and conse-
quently throughput) in prior systems. However, in trying to
allocate physical memory at runtime, PagedAttention ends
up changing the virtual memory layout of the KV cache
from contiguous to non-contiguous. Such a design leads to
non-trivial programming and performance overheads.

We present vAttention — an approach that mitigates frag-
mentation in physical memory while retaining the virtual
memory contiguity of the KV cache. We achieve this by
decoupling the allocation of virtual and physical memory
using CUDA virtual memory management APIs. We also
introduce various LLM-specific optimizations to address the
limitations of CUDA virtual memory support. Overall, vAt-
tention is a simpler, portable, and performant alternative to
PagedAttention: it supports various attention kernels out-
of-the-box and improves LLM serving throughput by up to
1.23× compared to the use of PagedAttention-based kernels
of FlashAttention-2 and FlashInfer.

CCS Concepts: • Software and its engineering→Main-
taining software; Virtual memory; Software design tech-
niques; • General and reference→ Performance; • Com-
puting methodologies→ Neural networks.

Keywords: Large language models; KV cache; fragmenta-
tion; memory management
ACM Reference Format:
Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramchandran Ram-
jee, and Ashish Panwar. 2025. vAttention: Dynamic Memory Man-
agement for Serving LLMs without PagedAttention. In Proceedings

∗Contributed to this work as an intern at Microsoft Research India.

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707256

System/library and issues related to PagedAttention
vLLM [51]: Pioneered PagedAttention. Despite being in an
actively maintained code repository, vLLM’s PagedAttention
kernel is up to 2.8× slower than FlashAttention-2 (Table 7).
Furthermore, changing block size changes the execution time
of the kernel by as much as 1.9× (Figure 3).
FlashAttention-2 [42]: PagedAttention-based prefill kernel
is up to 37% slower than the non-paged kernel (Figure 2)
while the decode kernel is up to 12% slower. Initial attempts
to add paging support failed unit tests [7].
FlashAttention-3 [67] / SDPA in cuDNN-9 [59]: State-of-
the-art attention kernels for NVIDIA Hopper architecture
did not support PagedAttention when released.
TensorRT-LLM [6]: Serving throughput dropped by more
than 10% in a Python front-end [5]. Recommends using the
C++ front-end. Even with C++, we observe up to 5% higher
latency in some cases with PagedAttention.
FlashInfer [77]: PagedAttention-based prefill kernel is up
to 42% slower than the non-paged kernel (Figure 2).

Table 1. The PagedAttention approach requires an appli-
cation to explicitly manage dynamically allocated physical
memory, including re-writing of attention kernels. These
examples highlight the complexity, performance and main-
tenance challenges associated with this approach.

of the 30th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 1 (ASP-
LOS ’25), March 30–April 3, 2025, Rotterdam, Netherlands.ACM, New
York, NY, USA, 18 pages. https://doi.org/10.1145/3669940.3707256

1 Introduction
Large Language Models (LLMs) are being deployed in a wide
range of applications e.g., chat bots, search engines and cod-
ing assistants [9, 10, 18, 19, 25, 41, 61]. Given the size and
scale of modern LLM deployments, optimizing inference has
become extremely important [36, 46, 48, 49, 51, 63, 78, 82].
Batching is a powerful technique to boost LLM serving

throughput [35, 51, 63, 78]. However, achieving a large batch
size requires careful allocation of GPU memory. For each
request, the serving framework stores the activations of all

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3669940.3707256
https://doi.org/10.1145/3669940.3707256

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramchandran Ramjee, & Ashish Panwar

the tokens processed so far in GPU memory and reuses
them for generating subsequent tokens. This is called the
KV cache [36, 63, 78] which accounts for a majority of GPU
memory usage during inference. Efficiently allocating GPU
memory for the KV cache is challenging for two reasons.
First, the per-request KV cache grows slowly (one token per
iteration), and second, a request’s decode length (or its total
KV cache size) is not known ahead of time.
Prior systems like Orca [78] and FasterTransformer [15]

allocate memory for each request based on the maximum
context length supported by the model (e.g., Yi-34B model
supports context length of up to 200K [32]). However, the
number of decode tokens generated are far less in practice,
e.g., the average decode length for the chat-based sharegpt
dataset is 415 tokens [35]. Therefore, static memory allo-
cation could create severe internal fragmentation, limiting
batch size and serving throughput.
Inspired by demand paging in OS-based virtual memory

systems, vLLM introduced PagedAttention [51] that allo-
cates small blocks of GPU memory on demand i.e., when
previously allocated blocks are fully utilized and the model
continues to generate more tokens. This approach provides
a near-perfect solution for mitigating fragmentation and
hence, PagedAttention has become the de facto standard for
dynamic memory allocation in LLM serving systems, e.g.,
TensorRT-LLM, HuggingFace TGI, LightLLM [4, 6, 28] etc.

However, we show that PagedAttention faces a funda-
mental consequence of dynamic memory allocation: dynam-
ically allocated objects are not guaranteed to be contiguous.
Note that user-level objects are allocated in virtual mem-
ory. Therefore, in trying to enable dynamic allocation of
physical memory, PagedAttention ends up changing the
virtual memory layout of KV cache from contiguous to
non-contiguous. We argue that this approach has several
pitfalls (§3). First, it requires rewriting attention kernels, i.e.,
to enable de-referencing all tokens of the non-contiguous KV
cache. Second, it forces developers to implement a memory
manager in the serving framework, i.e., to stitch together dy-
namically allocated virtual memory blocks. Third, it adds run-
time overhead in the critical path of both CPU and GPU exe-
cution. Table 1 provides empirical evidence and real-world
experiences to support these arguments.

The fundamental issue with PagedAttention and prior sys-
tems is that they rely on the reservation-based memory allo-
cation method exposed by the GPU runtime. In this method
(used by cudaMalloc), the runtime allocates both virtual and
physical memory on the GPU meaning that physical mem-
ory is allocated even if the corresponding virtual memory is
not accessed. This is in stark contrast to OS-based demand
paging [52, 62]. We show that separating the allocation of
virtual and physical memory allows for more effective KV
cache memory management. To support our claim, we in-
troduce vAttention (§5) — an approach that stores KV cache
in contiguous virtual memory without committing physical

memory ahead-of-time. vAttention decouples the allocation
of virtual and physical memory using the CUDA virtual
memory management (VMM) APIs [12].
In building vAttention, we find that using CUDA VMM

support for KV cache management poses two key efficiency
challenges for an LLM serving system (§6). First, memory
allocation using CUDA VMM APIs incurs high latency be-
cause each allocation involves a round-trip to the OS kernel.
We tackle latency issues with several LLM-specific optimiza-
tions such as overlapping memory allocation with compute,
opportunistically allocating pages ahead of time, and defer-
ring memory reclamation. Second, CUDA supports mem-
ory allocation only at the granularity of large pages, i.e., in
multiples of 2MB. Use of large pages can create significant
fragmentation. We address this challenge by modifying the
open-source CUDA unified virtual memory driver, adding
support for smaller 64KB pages. Our evaluation shows that
use of 64KB pages has no negative impact on the perfor-
mance of attention kernels, i.e., we do not find any evidence
of TLB thrashing. Together, these optimizations mitigate
fragmentation while hiding the latency cost of on demand
memory allocation, making vAttention a simpler, portable
and performant alternative to PagedAttention.

Overall, we make the following contributions:

• We present vAttention – a memory management ap-
proach that retains the virtual contiguity of KV cache
while enabling dynamic allocation of physical memory.
Our implementation of vAttention in vLLM seamlessly
adds dynamic memory allocation support to various
unmodified attention kernels.
• We compare vAttention against PagedAttention-based
alternatives of vLLM, FlashAttention-2 and FlashIn-
fer on Yi-6B, Llama-3-8B and Yi-34B with 1-2 A100
GPUs. Using FlashAttention-2’s non-paged attention
kernel, vAttention outperforms vLLM by up to 1.99×
in decode throughput. In long-context scenarios, it
also improves the end-to-end LLM serving throughput
by up to 1.18× and 1.23× over PagedAttention based
kernels of FlashAttention-2 and FlashInfer
• We demonstrate the portability benefit of vAttention
with the recently launched FlashAttention-3 kernel
(FA3 [67]). FA3 is optimized for the NVIDIA Hopper
architecture and was not released with PagedAtten-
tion support. vAttention supports FA3 out-of-the-box,
leading to 1.26 − 1.5× higher throughout over Page-
dAttention based FlashAttention-2.

2 Background
2.1 Large Language Models
Given an input sequence, an LLM predicts the probability of
an output sequence: a sequence is a set of tokens [51]. Each
inference request begins with a prefill phase that processes

vAttention: Dynamic Memory Management for Serving LLMs ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Symbol Definition

𝑁 Number of layers on a particular worker
𝐻 Number of KV heads on a particular worker
𝐷 Dimension of each attention head
𝑃 Number of bytes needed to store one element
𝐵 Maximum batch size
𝐿 Maximum context length supported by the

model
𝐿′ Context length of a request seen thus far

Table 2. Notations used in the paper.

prompt tokens in parallel and produces the first output to-
ken of the request. Thereafter, the decode phase iteratively
processes the output token generated in the previous step
and produces the next output token in every iteration [36].

LLMs are built atop one of the variants of the transformer
architecture [73]; an LLM consists of multiple transformer
blocks. Internally, a transformer block contains two types of
operators: position-wise and sequence-wise [78]. The former
category includes feed-forward network, layer normaliza-
tion, activation, embedding layer, output sampling layer, and
residual connections whereas attention is a sequence-level
operator. We primarily focus on attention since it is the pri-
mary consumer of GPU memory in LLM inference. Table 2
summarizes the notations used in the paper.

For the attention operator, the model computes the query,
key and value vectors from a given sequence of tokens
(𝑥1, 𝑥2,, 𝑥𝐾) ∈ R𝐾×𝐸 where E represents the embedding
size of the model. For each 𝑥𝑖 , query, key and value vectors
are computed as follows:

𝑞𝑖 =𝑊𝑞𝑥𝑖 , 𝑘𝑖 =𝑊𝑘𝑥𝑖 , 𝑣𝑖 =𝑊𝑣𝑥𝑖 (1)
The resulting 𝑘𝑖 and 𝑣𝑖 are appended to the key and value

vectors of the prior tokens of the corresponding request, pro-
ducing two matrices 𝐾,𝑉 ∈ R𝐿′×(𝐻×𝐷) where 𝐿′ represents
the context length of the request seen so far, H is the number
of KV heads of the model on a worker and D is the dimension
of each KV head. Then, attention is computed as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑞𝑖 , 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑞𝑖𝐾

𝑇

𝑠𝑐𝑎𝑙𝑒
)𝑉 (2)

The attention score is computed separately for each re-
quest in the batch. A request executes until the model gen-
erates a special end-of-sequence token or reaches the max-
imum context length for the request. Note that in each it-
eration of a request, all its preceding 𝑘𝑖 and 𝑣𝑖 are needed
to compute attention. Hence, an inference engine stores the
𝑘𝑖 and 𝑣𝑖 vectors in memory to reuse them across iterations.
We refer to this state of all layers collectively as KV cache. In
systems prior to PagedAttention, the K cache (or V cache) at
each layer of a worker is typically allocated as a 4D tensor of
shape [𝐵, 𝐿, 𝐻, 𝐷] where 𝐵 refers to batch size and 𝐿 refers
to the maximum possible context length of a request.

2.2 Fragmentation and PagedAttention
Serving LLMs with high throughput requires careful alloca-
tion of GPU memory. This is challenging because the total
context length of a request is not known in advance. Serv-
ing systems worked around this challenge by pre-reserving
KV cache space assuming that each context is as long as
the maximum length supported by the model (e.g., 200K
for Yi-34B-200K). vLLM shows that this strategy is prone to
severe internal fragmentation. In fact, vLLM showed that
prior reservation is suboptimal even if the context lengths
are known in advance. This is because the per-request KV
cache grows one token at a time and hence prior reservation
wastes memory over the entire lifetime of a request.

Inspired by the OS-based virtual memory systems, vLLM
proposed PagedAttention to mitigate fragmentation by dy-
namically allocating memory for the KV cache. PagedAt-
tention splits KV cache into fixed-sized blocks and allocates
memory for one block at a time. This way, vLLM allocates
only as much memory as a request needs, and only when
required – not ahead-of-time.
GPUs and page sizes: NVIDIA GPUs support multiple page
sizes in the hardware [22, 58, 65, 79]. A single call to a CUDA
VMM API can allocate one or more physical pages, which
we refer to as a page-group. We use page-groups to support
multiple allocation granularities for the KV cache, similar to
how multiple page sizes are commonly used in conventional
OS-based virtual memory systems [52, 62].

3 Issues with the PagedAttention Approach
Despite being inspired by demand paging, the PagedAtten-
tion approach is different from it: PagedAttention implements
demand paging in user space whereas conventional demand
paging is transparent to applications. This section elaborates
on issues that arise with such an approach.

3.1 Requires Re-writing the Attention Kernel
Conventional implementations of the attention operator as-
sume that the two input tensors K and V (Equation 2) are
stored in contiguous memory. By departing from the con-
ventional memory layout, PagedAttention requires an im-
plementation of the attention operator to be modified so as
to compute attention scores over non-contiguous KV cache
blocks. Writing correct and performant GPU kernels can be
challenging for most programmers [7].
Being a fundamental building block of the transformer

architecture, the attention operator has witnessed a tremen-
dous pace of innovation in the systems and ML communities
for performance optimizations [2, 37–40, 42, 43, 47, 49, 68, 77,
80], and this trend is likely to continue. In the PagedAtten-
tionmodel, keeping upwith new research requires continued
efforts in porting new optimizations to a PagedAttention-
aware implementation. Production systems can therefore
easily fall behind research, potentially losing performance

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramchandran Ramjee, & Ashish Panwar

Figure 1. PagedAttention involves two layers of memory
management: one in user space and one in OS kernel space.

and competitive advantage. To provide an example, Table 7
shows that the paged kernel of vLLM is already up to 2.8×
slower than the FlashAttention-2 kernel [37].

3.2 Adds Redundancy in the Serving Framework
PagedAttention makes an LLM serving system responsible
for managing the mappings between KV cache and dynami-
cally allocated memory blocks. For example, consider a re-
quest that allocates four KV cache blocks over time (left
half of Figure 1). These blocks are usually non-contiguous
in virtual memory. During the computation of Equation 2,
PagedAttention kernel needs to access all the elements of the
four KV cache blocks. To facilitate this, the serving system
needs to track the virtual memory addresses of KV cache
blocks and pass them to the attention kernel at runtime. This
approach effectively requires duplicating what the operating
system already does for enabling virtual-to-physical address
translation (right half in Figure 1).

3.3 Performance Overhead
3.3.1 Runtime overhead on the GPU. PagedAttention
slows down attention computation by adding extra code in
the critical path of execution. For example, the vLLM paper
acknowledges that the PagedAttention-based implementa-
tion was 20−26% slower than the corresponding none-paged
FasterTransformer kernel, primarily due to the overhead
of looking up Block-Tables and executing extra branches
(see Figure 18a in [51]). In addition, Figure 2 shows that
incorporating PagedAttention has also added a significant
performance overhead in other state-of-the-art kernel li-
braries. For example, PagedAttention based prefill kernels
of FlashAttention-2 and FlashInfer are up to 37% and 42%
slower than the non-paged kernels in the corresponding li-
braries. Our analysis reveals that the number of instructions
executed in PagedAttention kernels is 7 − 13% higher than
the non-paged kernels. Caching page indices also increases
register pressure, causing register spilling.
To highlight another example of difficulty involved in

writing an efficient paged kernel, Figure 3 shows that the
performance of vLLM’s paged decode kernel is significantly
worse with large block sizes of 64 and 128. Our analysis
indicates that this is likely due to L1 cache efficiency: smaller

1K 2K 4K 8K 16K 32K
Context Length

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
al

iz
ed

 R
un

ti
m

e

1.
07

x

1.
11

x 1.
26

x

1.
30

x

1.
36

x

1.
37

x

1.
42

x

1.
25

x

1.
28

x

1.
25

x

1.
25

x

1.
26

x

FA2 FA2_Paged FI FI_Paged

Figure 2. Overhead of PagedAttention in prefill kernels
(model: Llama-3-8B, one A100 GPU). Numbers on top show
overhead over the corresponding non-paged implementation
of FlashAttention-2 (FA2) and FlashInfer (FI).

1*16K 2*16K 4*16K 8*16K 16*16K
Batch Size * Context Length

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

N
or

m
al

iz
ed

 R
un

ti
m

e

1.
13

x

1.
09

x

1.
01

x

1.
02

x

1.
01

x1.
26

x

1.
44

x

1.
45

x

1.
47

x

1.
46

x1.
90

x

1.
93

x

1.
86

x

1.
89

x

1.
90

x

Block Size
16 32 64 128

Figure 3. Latency of vLLM’s paged decode kernel is sensitive
to block size (model: Llama-3-8B, one A100 GPU).

blocks have a higher memory bandwidth utilization due to
higher hit rates in the L1 cache.

3.3.2 Runtime overhead on the CPU. Implementing an
additional memory manager can add performance issues in
the CPU runtime of the serving system. We refer to a few
real-world examples and our own observations on vLLM to
corroborate this argument.

To enable PagedAttention, a serving system needs to sup-
ply Block-Tables to the attention kernel. In vLLM, the latency
of preparing a Block-Table depends on batch composition
and grows proportional to max_num_blocks × batch_size
where max_num_blocks refers to the number of KV cache
blocks in the longest request of the batch. This is because
vLLM manages a Block-Table as a 2D tensor and aligns the
number of KV cache blocks in each request by padding un-
occupied slots with zeros. If a batch contains a few long and
many short requests, such padding results in a significant
overhead. In our earlier experiments, we observed that Block-
Table preparation in vLLM was contributing 30% latency in
decode iterations. While a recent fix [17] has mitigated some
of this overhead, we find that it can still be as high as 10%.
High overhead of PagedAttention has also been found in
TensorRT-LLM, degrading throughput by 11% [5]. This issue
was attributed to the Python runtime of TensorRT-LLM and

vAttention: Dynamic Memory Management for Serving LLMs ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

moving to a C++ runtime can mitigate the CPU overhead.
However, doing so requires non-trivial programming effort.
Overall, this section shows that PagedAttention adds a

significant programming burden while also being inefficient.
In vAttention, we propose a more principled approach to
dynamic KV cache memory management. However, before
delving into vAttention, we first highlight some of the fun-
damental characteristics of LLM serving workloads from a
memory management perspective.

4 Insights into LLM Serving Systems
To understand the memory allocation pattern of LLM serving
systems, we experiment with Yi-6B running on a single A100
GPU, and Llama-3-8B and Yi-34B running on two A100 GPUs
with tensor-parallelism (TP). We set the initial context length
of each request to 1K tokens, vary the batch size from 1 to 320
and measure the throughput and memory requirement of the
decode phase (see §6 for our discussion and optimizations
for the prefill phase).
Observation-1: KV cache memory requirement is predictable
on a per-iteration basis. Due to auto-regressive decoding,
once a request enters the decode phase, its KV cache size
increases uniformly by one token per iteration. This allows
the serving system to determine in advance if additional
memory will be required during the iteration’s execution.1
Observation-2: KV cache does not require high memory allo-
cation bandwidth. The memory footprint of a single token
across all layers is typically few 10s-100s of kilobytes of
memory. For example, the per-token memory footprint of
Yi-6B, Llama-3-8B and Yi-34B is 64KB, 128KB and 240KB,
respectively. Further, each iteration runs for 10s-100s of mil-
liseconds implying that a request requires at most a few
megabytes of memory per second. While batching improves
system throughput [35, 36, 63, 82], the number of tokens
generated per second plateaus beyond a certain batch size
(Figure 4a). This implies that the memory allocation band-
width requirement also saturates at large batch sizes (e.g., at
256 for Yi-34B). For all the models we studied, we observe
that the highest memory allocation rate is at most 750MB per
second (Figure 4b). vAttention leverages these observations
to optimize KV cache memory management.

5 vAttention: Design and Implementation
Our primary observation is that physical memory fragmenta-
tion can be avoided without making KV cache non-contiguous
in virtual memory. To realize this, vAttention decouples the
allocation of virtual memory from physical memory by lever-
aging system support for demand paging (instead of imple-
menting demand paging in user space, as in PagedAttention).

1Note that this prediction is possible only at the granularity of individual
iterations; the total KV cache requirement of a request remains unknown
as it depends on the total number of output tokens in the request.

1 64 128 192 256 300
Batch Size

0
1000
2000
3000
4000
5000
6000

To
ke

ns
/s

ec
on

d

Yi-6B Llama-3-8B Yi-34B

(a) Decode throughput.

1 64 128 192 256 300
Batch Size

0
100
200
300
400
500
600
700
800

M
em

or
y

Al
lo

ca
ti

on

 (
M

B/
se

co
nd

)

Yi-6B Llama-3-8B Yi-34B

(b) Rate of memory allocation.

Figure 4. Decode throughput (top) and the rate of physical
memory allocation (bottom) saturate at large batch sizes.

5.1 Design Overview
vAttention employs distinct allocation policies for virtual and
physical memory. Specifically, we allocate a large contiguous
buffer for the KV cache in virtual memory ahead-of-time
(similar to systems prior to PagedAttention) while deferring
the allocation of physical memory to runtime (similar to
PagedAttention). This design preserves virtual contiguity
of KV cache without fragmenting physical memory. Note
that this approach could fragment and waste virtual mem-
ory. However, this is not an issue since virtual memory is
abundant, e.g., modern 64-bit systems provide a 128TB user-
addressable virtual memory per process.2

5.1.1 Pre-reserving virtual memory. Since virtual mem-
ory is abundant, we pre-allocate it in size that is large enough
to hold the KV cache of the maximum batch size (config-
urable) that needs to be supported. In doing so, we assume
that each request’s context length is same as the maximum
supported by the model.

5.1.2 Number of virtual memory buffers. A serving
framework maintains separate K and V tensors for each layer
of the model. Therefore, we reserve 2×𝑁 buffers on a worker
where 𝑁 is the number of layers managed by that worker.

5.1.3 Size of a virtual memory buffer. The maximum
size of a buffer is 𝐵𝑆 = 𝐵 × 𝑆 where B is the maximum
batch size and 𝑆 is the maximum size of a single request’s
per-layer K cache (or V cache) on a worker. Further, 𝑆 =

𝐿 × 𝐻 × 𝐷 × 𝑃 , where 𝐿 is the maximum context length
supported by the model, 𝐻 is the number of KV heads on
a worker, 𝐷 is the dimension of each KV head and 𝑃 is the
264-bit systems use only 48 bits for virtual addresses today, providing a per-
process virtual memory space of 256TB which is divided equally between
the user space and (OS) kernel space.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramchandran Ramjee, & Ashish Panwar

Virtual Memory

Physical Memory

R1 R2

(a) (b) (c) (d)

Each light shaded region represents a virtual tensor for one request’s K cache (or V cache) without any physical pages

Each dark shaded region represents part of K cache (or V cache) tensor that is mapped into physical memory

(e)R1 exits R3 arrives

R1 R2 R1 R2 R2 R3 R2

Figure 5. Dynamic memory management in vAttention for a single K cache (or V cache) tensor. (a) shows a virtual tensor for
a batch of two requests with no physical memory allocation yet. (b) R1 is allocated one physical page. (c) R1 is allocated two
pages and R2 is allocated one page. (d) R1 has completed but vAttention does not reclaim its memory (deferred reclamation).
(e) when R3 arrives, vAttention assigns R1’s tensor to it which is already backed by physical memory.

Latency (microseconds)
CUDA VM APIs vAttention VM APIs Description 64KB 128KB 256KB 2MB
cuMemAddressReserve * vMemReserve * Allocate a buffer in virtual memory 18 17 16 2
cuMemCreate * vMemCreate * Allocate a handle in physical memory 1.7 2 2.1 29
cuMemMap vMemMap Map a physical handle to a virtual buffer 8 8.5 9 2
cuMemSetAccess - Enable access to a virtual buffer - - - 38
cuMemUnmap - Unmap physical handle from a virtual buffer - - - 34
cuMemRelease * vMemRelease * Free physical pages of a handle 2 3 4 23
cuMemAddressFree * vMemFree * Free a virtual memory buffer 35 35 35 1

Table 3. CUDA VMM APIs. * represents APIs that we use once while instantiating or terminating the serving framework. Rest
of the APIs are used for (un)mapping physical memory pages at runtime. CUDA APIs (prefixed with cu) support only 2MB
pages, whereas our CUDA extension APIs (prefixed with v) support fine-grained allocations.

number of bytes based on model precision (e.g., P=2 for
FP16/BF16). As an example, consider Yi-34B with FP16 and
two-way tensor-parallelism (TP-2). In this case, 𝑁 =60, 𝐻 =

4, 𝐷 = 128, 𝑃 = 2 (8 KV heads of Yi-34B are split evenly on
two GPUs), and maximum supported context length 𝐿 =

200𝐾 . For this configuration, 𝑆 = 200𝑀𝐵 (200𝐾 ∗ 4 ∗ 128 ∗
2). Assuming 𝐵 = 500, the maximum size of each buffer
per-worker is 𝐵𝑆 = 100𝐺𝐵 (500 × 200𝑀𝐵). Therefore, the
total virtual memory requirement for 60 layers is 120 buffers
of 100GB each (12TB total). Note that the size of virtual
address space available grows with the number of workers,
e.g., with two TP workers, the total size of user-addressable
virtual address space is 256TB. Therefore, virtual memory is
always plentiful to satisfy large allocations. Figure 5 shows
an example of how vAttention allocates physical memory
pages dynamically.

5.2 Leveraging CUDA Virtual Memory Support
The standard GPU memory allocation interface cudaMalloc
does not support demand paging, i.e., it allocates virtual
memory and physical memory at the same time. However,
recent CUDA versions provide programmers a fine-grained
control over managing virtual and physical memory, includ-
ing support for decoupling their allocations [12, 45]. We
leverage these low-level APIs.

LLM Serving System (e.g., vLLM)

PyTorch (Tensors) vAttention (Virtual Tensors)

CUDA Runtime/Drivers

GPU Memory

cudaMalloc, … cuMemMap, …

KV cache APIsOther objects

Figure 6. An LLM serving system interacts with vAttention
for KV cache management with a set of simple APIs listed
in Table 4. All other memory objects (e.g., activations) are
allocated by the standard PyTorch caching allocator.

5.2.1 CUDA virtual memory APIs. Table 3 provides
an overview of CUDA VMM APIs that allow decoupling
the allocation of virtual memory from physical memory.
The allocation granularity depends on the page size used by
the GPU. Further, the size of a virtual memory buffer or a
physical memory handle must be a multiple of the physical
memory allocation granularity. Physical memory pages can
be allocated to (or de-allocated from) sub-regions in a virtual
memory buffer independently of other sub-regions.

vAttention: Dynamic Memory Management for Serving LLMs ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

APIs Description
init Initializes vAttention with model parameters.

arguments: 𝑁, 𝐵, 𝐿, 𝐻, 𝐷, 𝑃 , page-group-size.
return value: a list of KV cache tensors.

alloc_reqid Allocates an unused reqId and marks it active
arguments: None
return value: an integer reqId

free_reqid Frees a reqId and marks it inactive
arguments: an integer reqId
return value: None

step Ensures KV cache tensors are backed by physical
pages up to the current context length of each
active request
arguments: an array of size B containing sequence
lengths of each reqId
return value: 0 (success), -1 (failure).

Table 4.Key APIs that vAttention exposes to a serving frame-
work for dynamic KV cache memory management.

5.2.2 Extending PyTorch caching allocator. KV cache
is a collection of tensors. In current deep learning frame-
works such as PyTorch, a tensor allocated via APIs such as
torch.empty comes with pre-allocated physical memory.
This is because the PyTorch caching allocator relies on the
cudaMalloc interface (Figure 6). Relying on the low-level
API support from CUDA, we extend the PyTorch caching
allocator to allow an application to reserve a virtual memory
buffer for a tensor without committing physical memory
ahead-of-time. We refer to tensors allocated via these APIs
as virtual tensors.

5.2.3 Request-level KV cache indexing. A virtual ten-
sor represents the K cache (or V cache) of a layer for the maxi-
mum batch size B. In these tensors, different requests occupy
different non-overlapping sub-regions (say sub-tensors). We
locate the sub-tensor of a request with a unique integer iden-
tifier reqId that lies in the range of 0 to 𝐵 − 1 (note that
at most 𝐵 requests run simultaneously). The K cache (or V
cache) offset of a request’s sub-tensor in the virtual tensor of
the entire batch is reqId × 𝑆 where 𝑆 is the maximum size
of per-layer K cache (or V cache) of a request on a worker.
The request identifier reqId is allocated by vAttention.

5.3 Serving LLMs with vAttention
We build vAttention as a Python library that internally uses
a CUDA/C++ extension for interacting with CUDA drivers.
Our library exposes a set of simple APIs to the serving frame-
work (shown in Figure 6, Table 4 and Algorithm 1). For
simplicity, we discuss the use of these APIs from a single
worker’s perspective; all workers behave the same.

5.3.1 Initial setup. When the serving framework starts,
each model worker loads the vAttention library and config-
ures it with model parameters 𝑁,𝐻, 𝐷, 𝑃 , 𝐵 and a preferred
page-group size (§6.2) via the initAPI (line 4 in Algorithm 1).

Algorithm 1 Using vAttention in a serving framework.
1: max_batch_size← B
2: cache_seq_len← [0]*B
3: req_batch_idx← dict()
4: vattention.init(config_params)
5: while !request_pool.is_empty() do
6: for 𝑅𝑖 in new_requests do
7: if can_schedule(𝑅𝑖) then
8: idx← vattention.alloc_reqid()
9: req_batch_idx[𝑅𝑖]← idx
10: cache_seq_len[idx]← prompt_len(𝑅𝑖)
11: end if
12: end for
13: vattention.step(cache_seq_len)
14: model.forward()
15: for 𝑅𝑖 in active_requests do
16: idx← req_batch_idx[𝑅𝑖]
17: if is_complete(𝑅𝑖) then
18: cache_seq_len[idx]← 0
19: vattention.free_reqid(idx)
20: else
21: cache_seq_len[idx] + = 1
22: end if
23: end for
24: end while

Internally, vAttention reserves 2 × 𝑁 virtual tensors on the
worker, as shown in Figure 5(a), where 𝑁 is the number of
layers hosted by the worker. These virtual tensors are re-
served for the lifetime of the serving application. In addition,
vAttention also pre-allocates physical memory pages at each
worker during initialization. However, these pages are not
mapped into the KV cache at this point.

5.3.2 Scheduling a new request. When a new request is
scheduled for the first time, the serving framework obtains
a new reqId from vAttention via alloc_reqid (line 8). All
subsequent memory management operations of the request
are tagged with this reqId.

5.3.3 Model execution. Before scheduling a batch for ex-
ecution, the framework needs to ensure that the KV cache
sub-tensors of each active request are backed by physical
memory (Figure 5(b) and (c)). For this purpose, before dis-
patching the first kernel of an iteration to the GPU, the
framework invokes the step API (line 13), specifying the
current context length of each request (context length is
set to 0 for each inactive reqId). Internally, vAttention en-
sures that enough physical pages are mapped for each active
reqId before returning execution back to the framework. If
vAttention cannot satisfy the memory demand, it returns
with a failure in response to which a serving framework can
preempt one or more requests to allow forward progress

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramchandran Ramjee, & Ashish Panwar

(this is similar to vLLM’s default behavior). We leave more
sophisticated policies such as swapping out KV cache to CPU
memory as future work.
Depending on whether a request is in the prefill phase

or decode phase, different amount of physical memory may
need to be mapped for a given iteration. The prefill phase
processes the input tokens of a given prompt in parallel.
Therefore, the amount of physical memory needed to be
mapped depends on the number of prompt tokens being
scheduled. If the total K cache size of all prompt tokens at
one layer of the model is 𝑠 and page-group size is 𝑡 , then each
worker needs to ensure that at least (𝑠 + 𝑡 −1)/𝑡 page-groups
are mapped in each of the 2×𝑁 KV cache sub-tensors of the
given reqId.
For a request in the decode phase, the number of new

page-groups required is at most one per virtual tensor. This
is because each iteration produces only one output token for
a request. vAttention internally tracks the number of page-
groups mapped for each request and maps new page-groups
only when prior page-groups are about to be exhausted.

5.3.4 Request completion. A request terminates when
it reaches user specified or the maximum context length
supported by the model, or when the model produces a spe-
cial end-of-sequence token. The framework notifies vAtten-
tion of a request’s completion with free_reqid (line 19).
Internally, vAttention may unmap the physical pages of a
completed request or defer them to be freed later (§6.1.2).
Supporting continuous batching: Continuous batching
poses one challenge in computing attention in our design.
When a request from somewhere in the middle of a batch
exits, it creates an unused hole in the virtual tensors of
KV cache. This layout is not supported by implementations
that expect the query (Q) and KV cache to be of the same
size in batch (𝐵) dimension. However, FlashAttention pro-
vides rich API support to address this issue; its argument
cache_batch_idx allows Q and KV cache to have different
batch sizes and also be arranged in arbitrary order (i.e., batch
index 0 inQ can bemapped to batch index 1 in KV cache). vAt-
tention benefits from this API support in terms of both per-
formance and ease of programming; when the request com-
position of a batch changes, we update cache_batch_idx
of running requests such that their Q tensors map to their
respective KV cache based on their reqId.

6 Optimizations
There are two challenges in using CUDA virtual memory
support for serving LLMs. First, invoking CUDA VMM APIs
at runtime incurs high latency. Second, cuMemCreate cur-
rently allocates memory only at the granularity of large
pages, i.e., multiples of 2MB. Use of large pages can waste
physical memory due to internal fragmentation. This section
details a set of simple-yet-effective optimizations that we
introduce to overcome these challenges.

6.1 Hiding Latency of Memory Allocation
The serving framework invokes the step API in every itera-
tion. The latency of step depends on the number of page-
groups that need to be mapped into KV cache. Consider,
for example, that the KV cache of one request needs to be
extended for Yi-34B which has 60 layers. This requires 120
calls to cuMemMap + cuMemSetAccess each of which takes
about 40 microseconds. Therefore, growing the KV cache of
one request by new page-groups (two per layer) adds about
5 millisecond latency to the corresponding iteration. The
latency overhead grows proportional to the number of re-
quests that need new page-groups in a given iteration. We
propose the following optimizations to hide this latency:

6.1.1 Overlapping memory allocation with compute
(decode phase). We leverage the predictability of memory
demand to overlap memory allocation with computation. In
particular, note that each iteration produces a single output
token for every decode request. Therefore, memory demand
for a decode iteration is known ahead-of-time. Further, in the
decode phase, a request requires at most one new page-group
for each of its virtual tensors. vAttention keeps track of the
current context length and how much physical memory is
already mapped for each request. Using this information, it
determines when a request would need more memory and
uses a background thread to allocate new page-groups when
the preceding iteration is executing. For example, consider
that a request R1 would require more physical memory in
iteration i. When the serving framework invokes step API
in iteration i-1, vAttention launches a background thread
that maps page-groups for iteration i. Since per-iteration
latency is typically in the range of 10s-100s of milliseconds,
the background thread has enough time to prepare physical
memory mappings for an iteration before it starts executing.
This way, vAttention hides the latency of CUDA APIs by
performing memory allocations out of the critical path.

6.1.2 Deferred reclamation + eager allocation (prefill
phase). We observe that allocating physical memory for the
prefill phase can be avoided in many cases. Consider that
a request R1 completed in iteration i and a new request R2
joins the running batch in iteration i+1. To avoid allocating
page-groups to R2 from scratch, vAttention simply defers the
reclamation of R1’s page-groups (Figure 5(d)) and assigns
R1’s reqId to R2. This way, R2 uses the same tensors for its
KV cache that R1 was using – which are already backed by
physical pages (Figure 5(e)). Therefore, new allocations are
required only if R2’s context length is higher than R1.
We further optimize the prefill phase by proactively allo-

cating a small number of page-groups ahead of time. For this
purpose, we try to keep a certain number of page-groups
mapped into the virtual tensors of one of the inactive reqId.
When a new request arrives, we allocate this reqId. At the
same time, we identify a new reqId to be allocated next and

vAttention: Dynamic Memory Management for Serving LLMs ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

eagerly map physical page-groups for it. In most cases, these
eager allocations obviate the need to allocate physical mem-
ory in the critical path of prefill execution. Finally, we trigger
memory reclamation only when the number of page-groups
cached in vAttention falls below a certain threshold (e.g.,
less than 10% of GPU memory). We delegate both deferred
reclamation and eager allocation to the background thread
that the step API spawns.

6.2 Mitigating Internal Fragmentation
We mitigate internal fragmentation by reducing the granu-
larity of physical memory allocation. NVIDIA GPUs natively
support at least three page sizes: 4KB, 64KB and 2MB [22,
58, 65, 79]. Therefore, in principal, physical memory can be
allocated in any multiple of 4KB sizes. The simplest way to
achieve this would be to extend the existing CUDA VMM
APIs (listed in Table 3) to also support allocating smaller
pages (similar to how mmap in Linux supports multiple page
sizes [52, 62]). Unfortunately, the CUDA VMM APIs are im-
plemented in the closed-source NVIDIA drivers whichmakes
it impossible for us to modify their implementation.

Fortunately, some part of NVIDIA drivers (particularly re-
lated to unified memory management) is open-source. There-
fore, we implement a new set of APIs in the open-source
NVIDIA drivers to mimic the same functionality that existing
CUDA APIs provide but with support for multiple page sizes.
The second column in Table 3 shows our new APIs: most of
our APIs have a one-to-one relationship with existing CUDA
APIs except for vMemMap that combines the functionality
of cuMemMap and cuMemSetAccess, and vMemRelease that
combines the functionality of cuMemUnmap and cuMemRelease
for simplicity. In contrast to CUDA VMM APIs, our APIs al-
locate physical memory in 64KB, 128KB and 256KB sized
page-groups. A serving framework can configure a desired
page-group size in vAttention while initializing it (we use
the standard 2MB pages if the configured page-group size is
2MB). Table 3 shows the latency of each API with different
page-group sizes.

7 Evaluation
Our evaluation answers the following questions:

• How does vAttention impact the performance of at-
tention kernels and the overall performance of prefill
and decode phases (§7.1, §7.2)?
• How does vAttention impact the end-to-end LLM serv-
ing throughput (§7.3, §7.4, §7.5)?
• What is the effect of each of our optimizations (§7.6)?

Models andhardware:Weevaluate threemodels Yi-6B [33],
Llama-3-8B [21] and Yi-34B [32]. We conduct most of our
evaluation on a single NVIDIA A100 GPU for Yi-6B, and
two NVLink-connected A100 GPUs for Llama-3-8B and Yi-
34B (see Table 5). Each GPU has 80GB physical memory. We

Model Hardware # Q Heads # KV Heads # Layers
Yi-6B 1 A100 32 4 32
Llama-3-8B 2 A100s 32 8 32
Yi-34B 2 A100s 56 8 60

Table 5. Models and hardware used for evaluation.

use tensor-parallelism degree of two (TP-2) for both Llama-
3-8B and Yi-34B. To demonstrate the portability benefit of
vAttention, we use 1–2 H100 GPUs.
Evaluation methodology: The computation and memory
allocation pattern of the prefill and decode phases is substan-
tially different [35, 46, 82]. Attention kernels used for these
two phases are also different and hence we evaluate them
separately. The prefill phase requires one time memory allo-
cation potentially spanning multiple pages. In comparison,
the decode phase requires incremental memory allocation
over the lifetime of a request [51]. We define prefill through-
put as the number of prompt tokens processed per second,
and decode throughput as the number of tokens generated
per second.
Serving framework: For a fair comparison, we use vLLM
v0.2.7 as a common serving framework in all our experi-
ments. We integrated state-of-the-art kernel libraries of both
FlashAttention-2 v2.5.9 [1, 42, 43] and FlashInfer v0.4.0 [3]
as attention back-ends into vLLM, and further added support
for dynamic memory allocation via vAttention to their non-
paged kernels. While FlashAttention-2 and FlashInfer are
both based on the same underlying techniques (e.g., FlashDe-
coding [2]), they use different Block-Table formats; the for-
mer use a simple lookup table whereas the latter uses a
compressed Block-Table to optimize lookups.
Baselines: We compare performance obtained by using the
non-paged attention kernels (backed by vAttention for dy-
namic memory allocation), and their paged counterparts. In
addition, we also compare against vLLM’s decode kernel
(note that vLLM does not have a paged prefill kernel). We
also profiled each system to find its best performing configu-
ration. Accordingly, we set KV cache block size to 16 for both
vLLM and FlashInfer, and 256 for FlashAttention-2. Using a
higher block size for vLLM increases its kernel latency by
up to 1.9× as shown in Figure 3, and using a smaller block
size for FlashAttention-2 paged kernel increases its latency
by up to 9%. We find that the choice of page size does not
affect vAttention as long as fragmentation is not a concern.

7.1 Prefill Evaluation
Weevaluate 4 configurations for prefill: FA2_Paged, FI_Paged,
FA2_vAttention and FI_vAttention. Configurations with the
“_Paged” suffix represent the PagedAttention-based kernel
and those with “_vAttention” use the non-paged kernels of
the respective library. Figure 7 shows the prefill throughput
for our models. We summarize key findings below.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramchandran Ramjee, & Ashish Panwar

1K 2K 4K 8K 16K 32K 64K 128K 192K
Context Length

0
3000
6000
9000

12000
15000

To
ke

ns
/s

ec
on

d

Yi-6B (1 A100)

FA2_Paged
FI_Paged
FA2_vAttention
FI_vAttention

1K 2K 4K 8K 16K 32K 64K 128K 192K
Context Length

0
4000
8000

12000
16000
20000
24000

To
ke

ns
/s

ec
on

d

Llama-3-8B (2 A100s)

FA2_Paged
FI_Paged
FA2_vAttention
FI_vAttention

1K 2K 4K 8K 16K 32K 64K 128K 192K
Context Length

0
1000
2000
3000
4000
5000

To
ke

ns
/s

ec
on

d

Yi-34B (2 A100s)

FA2_Paged
FI_Paged
FA2_vAttention
FI_vAttention

Figure 7. Prefill throughput. vAttention backed systems outperform the paged counterparts of both FlashAttention-2 and
FlashInfer. Throughput for longer contexts is lower due to the quadratic complexity of prefill attention.

Model Context
Length

FlashAttention-2 FlashInfer
Paged vAttention Paged vAttention

Yi-6B
64K 10.6 (7.0) 9.1 (5.5) 10.9 (6.0) 9.1 (5.4)
128K 37.9 (30.3) 30.5 (23.1) 35.4 (25.4) 30.7 (23.3)
192K 81.5 (70.0) 64.6 (53.6) 73.0 (58.3) 65.1 (53.6)

Llama-3 64K 6.0 (3.4) 5.2 (2.7) 6.7 (3.0) 5.3 (2.8)
-8B 128K 20.4 (15.4) 16.8 (11.6) 20.3 (12.8) 16.8 (11.4)

192K 43.3 (35.6) 34.8 (26.9) 40.9 (29.7) 34.7 (26.7)
64K 25.5 (13.2) 22.8 (10.3) 26.0 (11.2) 22.7 (10.1)

Yi-34B 128K 82.8 (56.9) 68.4 (43.2) 76.0 (46.7) 67.4 (42.5)
192K 170.7 (131.8) 136.9 (98.8) 148.8 (104.7) 134.6 (96.5)

Table 6. Prefill completion and attention (in parenthesis)
time with different attention back-ends (unit: seconds).

Small contexts: For small contexts, prefill cost is dominated
by the linear operators, i.e., attention’s contribution is rela-
tively low [36]. Hence, even though vAttention helps speed
up attention computation, the throughput of both paged and
vAttention back-ends is nearly identical in FlashAttention-2.
However, for FlashInfer, we find that using vAttention helps
improve prefill throughput even for small contexts. This is
because FlashInfer incurs various other sources of overhead
in the paged version. First, appending a new K or V ten-
sor to the KV cache requires a single tensor copy operation
in vAttention, whereas in a paged implementation, it re-
quires appending one block at a time (the copy operation has
been optimized for FlashAttention-2 by vLLM [13]). Second,
FlashInfer involves creation and deletion of a few objects
for its compressed Block-Tables in every iteration. vAtten-
tion avoids such overheads because it maintains KV cache’s
virtual contiguity, eliminating the need for a Block-Table.
Long contexts: The contribution of attention computation
becomes significant at 16K and higher context lengths in our
experiments. Therefore, even for FlashAttention-2 back-end,
vAttention outperforms the paged counterpart. For exam-
ple, at context length 192K, FA2_vAttention outperforms
FA2_Paged by 1.24×, 1.26× and 1.24× for Yi-6B, Llama-3-8B
and Yi-34B, respectively. Similarly, for FlashInfer back-ends,
FI_vAttention improves prefill throughput by up to 1.25×
and 1.36× for Yi-6B and Llama-3-8B (context length 16K),
and 1.17× for Yi-34B (context length 32K).
Attention time: vAttention’s improvement in prefill through-
put is primarily due to faster attention kernels enabled by a
(virtually) contiguous KV cache. This is because the prefill

Model BS vLLM FA2_Paged FI_Paged FA2_vAttention

Yi-6B 16 32.3 11.5 15.2 11.3
32 64.1 25.5 25.4 25.3

Llama-3
-8B

16 17.8 11.9 12.1 11.8
32 35.3 25.4 23.23 25.3

Yi-34B 12 41.4 17.4 24.1 17.4
16 55.1 21.7 28.8 21.8

Table 7. Total latency of attention kernel (sum of all layers)
per decode iteration (in milliseconds, BS = batch size).

phase of a long prompt is primarily dominated by attention
computation, as can be observed by comparing the numbers
inside parenthesis with total prefill completion time in Ta-
ble 6. For FlashAttention-2, nearly all the gains of vAttention
are due to faster attention kernels, e.g., prefill gains of 1.5
seconds, 7.4 seconds and 16.9 seconds for Yi-6B are all due to
gains in attention computation. vAttention enabled kernels
also help with the FlashInfer back-end. In addition, FI_Paged
also has other sources of overheads, e.g., in the 14 seconds
of total savings (Yi-34B, 192K context), only 7 seconds is due
to attention and the rest is due to other sources.

7.2 Decode Evaluation
For decodes, in addition to FA2_Paged and FI_Paged, we
also evaluate the throughput obtained with vLLM’s decode
kernel (the first ever kernel to support PagedAttention). For
vAttention, we use FlashAttention-2’s non-paged kernel. Un-
fortunately FlashInfer’s non-paged decode kernel has signif-
icantly higher latency (up to 14.6×) compared to all these
other kernels. Hence, while vAttention can support dynamic
memory allocation for FlashInfer’s non-paged decode kernel,
we omit it for evaluation in this section.

Figure 8 shows the decode throughput of Yi-6B, Llama-3-
8B and Yi-34B with varying batch size up to 32 (except for
Yi-34B which runs out of memory for batch size 32). We set
the initial context length of each request to 16K tokens and
calculate decode throughput based on the mean latency of
400 decode iterations.

First, vAttention is on par with the best of PagedAttention
as shown by FA2_Paged and FA2_vAttention in Figure 8.
In comparison, FI_Paged has somewhat lower throughput
and vLLM is the worst for all models and configurations.

vAttention: Dynamic Memory Management for Serving LLMs ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

1 2 4 8 12 16 32
Batch Size

0
200
400
600
800

1000

To
ke

ns
/s

ec
on

d

Yi-6B (1 A100)
vLLM
FA2_Paged

FI_Paged
FA2_vAttention

1 2 4 8 12 16 32
Batch Size

0
200
400
600
800

1000

To
ke

ns
/s

ec
on

d

Llama-3-8B (2 A100s)
vLLM
FA2_Paged

FI_Paged
FA2_vAttention

1 2 4 8 12 16
Batch Size

0

100

200

300

400

To
ke

ns
/s

ec
on

d

Yi-34B (2 A100s)
vLLM
FA2_Paged

FI_Paged
FA2_vAttention

Figure 8. Decode throughput. FA2_vAttention is on par with FA2_Paged (note the overlapping lines) which is the best among
all PagedAttention based alternatives, while outperforming FI_Paged and vLLM.

For example, FA2_Paged and FA2_vAttention outperform
vLLM by up to 1.99×, 1.58× and 1.53× for Yi-6B, Llama-
3-8B and Yi-34B, respectively. The primary reason is that
vLLM’s decode kernel has significantly higher latency than
the FlashAttention-2 based kernels; while FlashAttention-2
has continuously adopted new optimizations (e.g., FlashDe-
coding [2]), vLLM has lagged behind. For example, Table 7
shows that vLLM’s PagedAttention kernel incurs up to 2.8×,
1.5×, and 2.5× higher latency than FlashAttention-2 kernels
for Yi-6B, Llama-3-8B and Yi-34B. This is despite vLLM being
in an actively maintained open-source serving stack, as well
as being used by various companies for serving LLMs. This
is an important result that underlines the importance of low
software complexity and portability.

Second, relative gains of FA2_vAttention and FA2_Paged
increase over vLLM with the batch size, e.g., as batch size
increases from 4 to 32 for Llama-3-8B, relative gains increase
from 1.05× to 1.58×. This is because the latency of a decode
attention kernel is proportional to the total number of tokens
in the batch [34]. Therefore, the contribution of attention
kernel in the overall latency – hence gains with a more
efficient kernel – increase with the batch size. Further, for
the same reasons as discussed in §7.1 (faster attention and
lower CPU overhead), FA2_vAttention delivers up to 1.23×
higher throughput than FI_Paged (Yi-6B, batch size 12).
Finally, note that vAttention is only as good as the state-

of-the-art PagedAttention for decode throughput, as com-
pared to prefills where it outperforms PagedAttention. This
is because in case of decode attention, paged and non-paged
kernels have similar latency as shown in Table 7. We believe
this is due to memory bound nature of decode attention, i.e.,
memory stalls make it possible to hide the effect of additional
compute that paging support requires. However, hiding com-
pute overhead in a prefill attention kernel is hard because it
is already compute bound (see Table 6 for vAttention’s gains
in the prefill kernel).

7.3 End-to-end Performance: Offline Scenarios
We measure the end-to-end system throughput in an offline
scenario as the number of requests completed per minute.We
evaluate a total of 427 long-context requests from the arXiv-
Summarization workload trace wherein the total context
length per-request varies from 64K tokens to 192K tokens

Yi-6B Llama-3-8B Yi-34B0
1
2
3
4
5
6

Re
qu

es
ts

 p
er

 m
in

ut
e

2.79

4.55

1.30

2.75

4.27

1.28

3.28

5.25

1.47

FA2_Paged
FI_Paged
FA2_vAttention

Figure 9. Offline inference throughput while serving long-
context requests from the arXiv-Summarization dataset [11].

and the number of output tokens per-request varies from 17
to 5153. The mean prefill to decode token ratio is 356. Fig-
ure 9 shows throughput for different attention backends for
all three models. FA2_vAttention outperforms FA2_Paged
by 1.18×, 1.15× and 1.13×, and FI_Paged by 1.19×, 1.23×,
and 1.14× for Yi-6B, Llama-3-8B and Yi-34B, respectively. In
general, vAttention’s performance gains are proportional to
the context length and the prefill to decode token ratio (P:D
ratio); these factors determine how much prefill attention
contributes to the total runtime. A higher P:D ratio as well
as longer context lengths indicate that the workload is more
prefill bound. vAttention provides higher gains in such cases.

7.4 End-to-end Performance: Online Scenarios
Weevaluate an online inference scenario serving long-context
requests from arXiv-Summarization [11]. In total, we run
512 requests wherein the per-request input context length
varies from 22K to 45K tokens (mean 29K), the number of
decode tokens varies from 6 to 3250 (mean 348) and the
mean P:D ratio is 129. We evaluate performance near the
serving capacity of the system which denotes the maximum
load a system can handle without incurring high queuing
delays [35, 51]. We vary input load (queries-per-second or
QPS) based on Poisson distribution and schedule requests in
first-come-first-serve order. Figure 10 shows the CDF of the
end-to-end request execution latency for this experiment.We
see that vAttention consistently outperforms both baselines.
For example, FA2_vAttention reduces the median request ex-
ecution latency over FA2_Paged by up to 42% (QPS 0.25) for
Yi-6B, by up to 28% (QPS 0.3) for Llama-3-8B and by up to 29%
for Yi-34B (QPS 0.1). The primary reason for vAttention’s

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramchandran Ramjee, & Ashish Panwar

0 200 400 600 8000.0

0.2

0.4

0.6

0.8

1.0

CD
F

Yi-6B (TP-1, QPS=0.2)

FA2_Paged
FI_Paged
FA2_vAttention

0 200 400 600 800 1000 1200 14000.0

0.2

0.4

0.6

0.8

1.0

CD
F

Yi-6B (TP-1, QPS=0.25)

FA2_Paged
FI_Paged
FA2_vAttention

0 50 100 150 200 250 3000.0

0.2

0.4

0.6

0.8

1.0

CD
F

Llama-3-8B (TP-2, QPS=0.25)

FA2_Paged
FI_Paged
FA2_vAttention

0 200 400 600 800 10000.0

0.2

0.4

0.6

0.8

1.0

CD
F

Llama-3-8B (TP-2, QPS=0.3)

FA2_Paged
FI_Paged
FA2_vAttention

0 200 400 600 800 1000 1200 1400
Request Execution Latency (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Yi-34B (TP-2, QPS=0.1)

FA2_Paged
FI_Paged
FA2_vAttention

0 500 1000 1500 2000
Request Execution Latency (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Yi-34B (TP-2, QPS=0.125)

FA2_Paged
FI_Paged
FA2_vAttention

Figure 10. CDF of end-to-end request execution latency in
online inference under varying load.

Yi-6B Llama-3-8B Yi-34B0
2
4
6
8

10
12

Re
qu

es
ts

 p
er

 m
in

ut
e

5.93

8.06

2.65

6.57

9.28

2.81

8.90
10.17

3.50

FA2_Paged
FA2_vAttention
FA3_vAttention

Figure 11. Offline inference throughput on H100 GPUs.

performance gain is that it can compute the prefill phase of
new requests faster than the PagedAttention-based systems
which substantially reduces queuing delays. Consistent with
our prior results, FI_Paged is slower than FA2_Paged and
hence our gains our FI_Paged are relatively higher compared
to our gains over FA2_Paged.

7.5 Exemplifying Portability: FlashAttention-3
We demonstrate the portability benefit of vAttention with
the recently released FA3 kernel [67]. FA3 is optimized for
the NVIDIA Hopper architecture and did not support Page-
dAttention when released. Therefore, dynamic memory allo-
cation via PagedAttention is not feasible for FA3 at the time
of writing this paper (integration of FA3 into vLLM is also a
work in progress [16, 26]). vAttention not only enables dy-
namic memory allocation with FA3, it also requires no code
changes to deploy FA3. Figure 11 shows the offline inference
throughput of our models with 1–2 H100 GPUs (Yi-6B de-
ployed on a single GPU and the other models on two GPUs
each) on the same arXiv-Summarization-based workload as
evaluated in §7.3. FA3 with vAttention provides an additional

0 100 200 300 400 500
Decode Iteration

0

20

40

La
te

nc
y

(m
s)

Without overlapping
With Overlapping

Figure 12. Latency of decode iterations with and without
overlapping memory allocation with compute (batch size=32,
context length=4K–8K, model: Llama-3-8B)

Yi-6B Llama-3-8B Yi-34B0
1
2
3
4
5
6

Pr
ef

ill
 T

im
e

(s
ec

on
ds

)

1.
08

x
1.

02
x

1.
00

x

1.
15

x
1.

03
x

1.
00

x

1.
07

x
1.

02
x

1.
00

x

Without CUDA APIs
CUDA APIs + 64KB pages (synchronous)
CUDA APIs + 2MB (synchronous)
CUDA APIs + Deferred reclamation

Figure 13. Prefill completion time of a single prompt of 16K
tokens with different memory allocation strategies.

speedup of up to 1.35× (Yi-6B) over FA2_vAttention which
is already up to 1.15× faster than FA2_Paged.

7.6 Ablation Studies
7.6.1 Hiding allocation latency. Figure 12 shows the la-
tency of more than 500 decode iterations of Llama-3-8B. For
this experiment, we used a batch of 32 requests with per
request prefill context length varying between 2K to 3K to-
kens. It is evident that overlapping memory allocation with
compute effectively hides the latency of CUDA VMM APIs.
We used 2MB pages for this experiment to show that even
the worst case memory allocation latency can be hidden by
overlapping it with compute (Table 3 shows that 2MB pages
incur highest latency). In contrast, allocating memory syn-
chronously via CUDA APIs leads to frequent latency spikes
of 5 to 15 milliseconds, depending on how many requests
require physical memory allocation in a given iteration.

7.6.2 Deferred reclamation. Figure 13 shows that syn-
chronous memory allocation incurs prefill overhead of up
to 1.15× with 64KB pages and up to 1.03× with 2MB pages.
In most cases, deferred reclamation eliminates the need to
invoke CUDA VMMAPIs for prefills because a newly arrived
request can simply re-use physical memory allocated to a
prior request. This way, deferred reclamation ensures that
prefill latency is not affected by memory allocation.

7.6.3 Effect of page size. In many applications, use of
smaller pages can potentially degrade performance due to
TLB thrashing [52, 62, 64, 70]. We find that this is not the
case for LLM inference. For example, Figure 14 shows that

vAttention: Dynamic Memory Management for Serving LLMs ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

2K 4K 8K 16K 32K
Context Length (Prefill)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 R
un

ti
m

e

1.
02

x

1.
00

x

1.
00

x

1.
01

x

0.
98

x

2MB 64KB

1*32K 2*32K 4*32K 8*32K 16*32K
Batch Size * Context Length (Decode)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 R
un

ti
m

e

1.
00

x

1.
00

x

1.
02

x

1.
02

x

1.
00

x

2MB 64KB

Figure 14. Effect of page size on the runtime of
FlashAttention-2’s prefill (left) and decode (right) attention
kernels (model: Llama-3-8B).

Model Block Size (# Tokens in a page-group)
64KB 128KB 256KB 2MB

Yi-6B (TP-1) 64 128 256 2048
Yi-6B (TP-2) 128 256 512 4096
Llama-3-8B (TP-1) 32 64 128 1024
Llama-3-8B (TP-2) 64 128 256 2048
Yi-34B (TP-1) 32 64 128 1024
Yi-34B (TP-2) 64 128 256 2048

Table 8. KV cache block size as a function of page-group
size and degree of tensor parallelism.

the execution latency of an attention kernel remains largely
unaffected when the KV cache is allocated using 64KB pages,
compared to using 2MB pages. In a separate experiment, we
find that these results are also consistent with very large
models, e.g., Llama-3-70B and GPT-3-175B. We attribute this
to the regular computation pattern of the attention operator
as well as the hand-tuned implementations that explicitly
try to avoid irregular memory accesses.
Table 8 shows the block size i.e., number of tokens per

physical page-group. Smaller page-groups enable fine-grained
allocation, approaching vLLM’s recommended block size of
16–32 (the minimum block size in FlashAttention-2 is 256
– higher than vAttention). This shows that vAttention is
as effective in reducing fragmentation as PagedAttention.
In terms of end-to-end system performance, we find that
2MB pages are good enough for many online serving sce-
narios where latency constraints prevent use of very high
batch sizes. In contrast, smaller page-groups are better for
throughput-oriented scenarios where maximizing batch size
is important to obtain peak performance. For example, using
2MB pages could serve batch sizes of up to 187, 203 and
56 for Yi-6B, Llama-3-8B and Yi-34B on a dynamic trace
(dataset: OpenChat [74], load: 7 queries per seconds). In con-
trast, 64KB pages helped serve batch sizes of up to 240, 258
and 68 for our models as shown in Figure 15.

7.6.4 Memory allocation bandwidth. Table 9 shows that
even with 64KB pages (our smallest), vAttention can allocate
as much as 7.6GB physical memory per second per GPU.
This is more than an order of magnitude higher than the
maximum memory allocation rate of 750MB per second of

Yi-6B Llama-3-8B Yi-34B0

100

200

300

400

M
ax

 B
at

ch
 S

iz
e

1.
24

x
1.

27
x

1.
28

x

1.
23

x
1.

26
x

1.
27

x

1.
18

x
1.

20
x

1.
21

x

2MB 256KB 128KB 64KB

Figure 15.Maximum batch size obtained with different page-
group sizes for a dynamic workload.

Config. 64KB 128KB 256KB 2MB
TP-1 7.59 14.56 27.04 35.17
TP-2 15.18 29.12 54.08 70.34

Table 9. Physical memory allocation bandwidth (GB per
second) with varying allocation granularity.

decodes (Figure 4). Larger page-group sizes and higher TP di-
mensions increase thememory allocation rate proportionally.
Therefore, memory allocation bandwidth of CUDA VMM
APIs is more than sufficient for LLM inference.

8 Discussion
8.1 Managing KV cache via Unified Memory
To enable dynamic memory allocation, we also considered
leveraging unified memory via cudaMallocManaged [58, 60].
However, we find that unified memory support is currently
not suitable for serving LLMs. First, it does not support par-
tial freeing, preventing reclamation of physical memory of
individual requests. Second, it lacks support for memory
aliasing which prevents de-duplication of KV cache content
in physical memory (de-duplication is useful when requests
share a common prefix [51]), consequently limiting batch
size. cudaMallocManaged also allocates 2MB pages by de-
fault which can cause severe fragmentation. However, our
changes in NVIDIA drivers are based on unified memory: we
allocate virtual tensors using cudaMallocManaged, enabling
support for partial freeing and page sharing with additional
APIs. In addition, we introduce latency hiding optimizations
and support for smaller pages. Therefore, one could con-
sider our extensions to NVIDIA drivers as “unified memory
optimized for LLM serving”.

8.2 Reducing Fragmentation via Tensor Slicing
To reduce fragmentation caused by 2MB pages, we also pro-
vide an alternative method that does not require modifying
NVIDIA drivers. In this method, we use a single 2MB page
to store the KV cache tokens of all layers for a given request.
This can be done by allocating one virtual tensor of shape
[𝐵, 𝐿, 𝑁 , 𝐻, 𝐷] for K cache (and one for V cache) and slicing it
across all layers, instead of allocating 2×𝑁 virtual tensors of
shape [𝐵, 𝐿, 𝐻, 𝐷]. This reduces fragmentation to 1/𝑁 of the

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramchandran Ramjee, & Ashish Panwar

Model Block size (# Tokens in a 2MB page)
w/o Tensor Slicing w/ Tensor Slicing

Yi-6B (TP-1) 2048 64
Yi-6B (TP-2) 4096 128
Llama-3-8B (TP-1) 1024 32
Llama-3-8B (TP-2) 2048 64
Yi-34B (TP-1) 1024 18
Yi-34B (TP-2) 2048 36

Table 10. KV cache block size with and without tensor slic-
ing with 2MB pages.

prior design as shown in Table 10. In this design, the K cache
(or V cache) of a particular layer 𝑛 is represented by slice
[𝐵, 𝐿, 𝑛 : 𝑛 + 1, 𝐻, 𝐷] of the original tensor, and can be passed
to attention kernels for computation. However, note that
with tensor slicing, the K cache (and V cache) of each layer is
no longer contiguous. Computing attention over such a ten-
sor slice is possible only if the the attention kernel supports
memory addressing with strides. While many kernels (e.g.,
FlashAttention-2) support strides out-of-the-box, the earlier
versions of FlashInfer lacked such support [14]. Therefore,
relying on tensor slicing as the primary method of reduc-
ing fragmentation would have prevented vAttention from
supporting FlashInfer kernels. Hence, to support unmodified
FlashInfer kernels, we chose to add support for smaller pages
in NVIDIA drivers. Importantly, our two solutions are com-
patible with each other; one could deploy smaller pages with
tensor slicing to further reduce fragmentation, if required.

8.3 Programming Effort
PagedAttention requires significant programming effort. For
example, integrating FlashInfer decode kernels in vLLM
required more than 600 lines of code changes in over 15
files [24, 27, 30]. Implementing the initial paging support in
FlashAttention-2 kernel also required ≈ 280 lines of code
changes [20] and additional efforts to support small block
sizes [8]. In contrast, vAttention makes it feasible to replace
one attention kernel with another with only a few lines of
code changes in the serving framework (Figure 16). Note
that the example shown in Figure 16 has no interaction with
memorymanagement; this is precisely the goal of vAttention,
i.e., when a slow kernel is replaced by a fast kernel, memory
management should continue to work transparently.

9 Related Work
Optimizing LLM inference is an active area of research [44,
50, 53–57, 71, 72, 81, 83]. Various techniques have been pro-
posed to improve different aspects of LLM serving like batch-
ing [35, 51, 78], disaggregation [48, 63, 82], scheduling [69,
75]. However, central to all these techniques is the need
for efficient KV cache memory management. Since vLLM,

Figure 16. Illustration of code changes needed to replace
the prefill attention kernel of FlashAttention-2 by FlashInfer
when using vAttention for memory allocation.

PagedAttention has been adopted in various serving frame-
works e.g., TensorRT-LLM [6], LightLLM [4], and libraries
e.g., FlashAttention-2 [1] and FlashInfer [3]. Some other con-
current works have also proposed optimizations for attention
kernels [29, 39, 47, 49, 66, 67, 76, 80]. Deploying new kernels
for inference is hard with PagedAttention. vAttention offers
an alternate – which we believe is also a more principled –
approach to dynamic KV cache memory management that
makes it easier to deploy new kernels.

In a recent work, GMLake [45] showed that using CUDA
virtual memory support can mitigate fragmentation in DNN
training jobs, increasing training batch size. In particular,
GMLake uses CUDA support to coalesce multiple smaller
physical memory pages into a single virtually contiguous
object that can prevent out-of-memory errors. In contrast,
vAttention targets optimizing inference workloads.

10 Conclusion
In this paper, we propose vAttention for dynamic KV cache
memory management in LLM serving systems. The key high-
light of vAttention is that it mitigates fragmentation in phys-
ical memory while retaining the contiguity of KV cache in
virtual memory. We present various examples to highlight
that vAttention reduces programming burden while improv-
ing portability and performance compared to the popular
PagedAttention approach.

Acknowledgments
We thank our shepherd Sam Ainsworth, along with the
anonymous ASPLOS reviewers, for their valuable feedback.
We thank NVIDIA for useful discussions on CUDA VMM
APIs and for sharing their experiences with vAttention. We
also thank members of the open-source community (GitHub
user names izhuhaoran and tongping) for trying to upstream
the vAttention approach to vLLM [23, 31], and Zihao Ye for
clarifying the role of register spilling in the runtime over-
head of PagedAttention. Ajay Nayak is supported by the
Prime Minister’s Fellowship Scheme for Doctoral Research,
co-sponsored by the Confederation of Indian Industry, the
Government of India, and Microsoft Research India.

vAttention: Dynamic Memory Management for Serving LLMs ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

References
[1] 2022. FlashAttention. https://github.com/Dao-AILab/flash-attention.
[2] 2023. Flash-Decoding for long-context inference. https://crfm.stanford.

edu/2023/10/12/flashdecoding.html.
[3] 2023. FlashInfer: Kernel Library for LLM Serving. https://github.com/

flashinfer-ai/flashinfer.
[4] 2023. LightLLM: A Light and Fast Inference Service for LLM. https:

//github.com/ModelTC/lightllm.
[5] 2023. Performance decay when using paged attention. https://github.

com/NVIDIA/TensorRT-LLM/issues/75.
[6] 2023. TensorRT-LLM: A TensorRT Toolbox for Optimized Large Lan-

guage Model Inference. https://github.com/NVIDIA/TensorRT-LLM.
[7] 2023. Use optimized kernels for MQA/GQA. https://github.com/vllm-

project/vllm/issues/1880.
[8] 2024. Add support for small page sizes. https://github.com/Dao-

AILab/flash-attention/pull/824.
[9] 2024. Amazon CodeWhisperer. https://aws.amazon.com/

codewhisperer/.
[10] 2024. Bing AI. https://www.bing.com/chat.
[11] 2024. ccdv/arxiv-summarization. https://huggingface.co/datasets/

ccdv/arxiv-summarization.
[12] 2024. CUDA Toolkit Documentation: Virtual Memory Manage-

ment. https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA_
_VA.html.

[13] 2024. Custom CUDA kernels for KV cache copy operations. https:
//github.com/vllm-project/vllm/blob/main/csrc/cache_kernels.cu.

[14] 2024. Custom strides to support non-contiguous KV
cache. https://github.com/flashinfer-ai/flashinfer/commit/
85b1878996a29814f674ee5000facb1e2e763d9a.

[15] 2024. Faster Transformer. https://github.com/NVIDIA/
FasterTransformer.

[16] 2024. [Feature]: FlashAttention 3 support. https://github.com/vllm-
project/vllm/issues/6348#issuecomment-2540969988.

[17] 2024. Fix eager mode performance. https://github.com/vllm-project/
vllm/pull/2377.

[18] 2024. Github Copilot. https://github.com/features/copilot.
[19] 2024. Google Bard. https://bard.google.com.
[20] 2024. Implement Page KV Cache. https://github.com/Dao-AILab/flash-

attention/commit/54e80a3829c6d2337570d01e78ebd9529c02d342.
[21] 2024. Meta-Llama-3-8B. https://huggingface.co/meta-llama/Meta-

Llama-3-8B.
[22] 2024. Pascal MMU Format Changes. https://nvidia.github.io/open-

gpu-doc/pascal/gp100-mmu-format.pdf.
[23] 2024. PoC of dAttention support (based on vAttention). https://github.

com/vllm-project/vllm/pull/9078.
[24] 2024. Refactor Attention Take 2. https://github.com/vllm-project/

vllm/pull/3462.
[25] 2024. Replit Ghostwriter. https://replit.com/site/ghostwriter.
[26] 2024. [Roadmap] vLLM Roadmap Q4 2024 #9006. https://github.com/

vllm-project/vllm/issues/9006#issue-2559831134.
[27] 2024. Separate attention backends. https://github.com/vllm-project/

vllm/pull/3005/.
[28] 2024. Text Generation Inference. https://huggingface.co/text-

generation-inference.
[29] 2024. Tile primitives for speedy kernels. https://github.com/

HazyResearch/ThunderKittens.
[30] 2024. Use FlashInfer for Decoding. https://github.com/vllm-project/

vllm/pull/4353.
[31] 2024. VMM KV cache for NVIDIA GPUs. https://github.com/vllm-

project/vllm/pull/6102.
[32] 2024. Yi-34B-200K. https://huggingface.co/01-ai/Yi-34B-200K.
[33] 2024. Yi-6B-200K. https://huggingface.co/01-ai/Yi-6B-200K.
[34] Amey Agrawal, Nitin Kedia, Jayashree Mohan, Ashish Panwar, Nipun

Kwatra, Bhargav S Gulavani, Ramachandran Ramjee, and Alexey Tu-
manov. 2024. Vidur: A Large-Scale Simulation Framework For LLM

Inference. Proceedings of The Seventh Annual Conference on Machine
Learning and Systems, 2024, Santa Clara (2024).

[35] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun
Kwatra, Bhargav Gulavani, Alexey Tumanov, and Ramachandran Ram-
jee. 2024. Taming Throughput-Latency Tradeoff in LLM Inference with
Sarathi-Serve. In 18th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 24). USENIX Association, Santa Clara, CA,
117–134. https://www.usenix.org/conference/osdi24/presentation/
agrawal

[36] Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra,
Bhargav S. Gulavani, and Ramachandran Ramjee. 2023. SARATHI: Ef-
ficient LLM Inference by Piggybacking Decodes with Chunked Prefills.
arXiv:2308.16369 [cs.LG]

[37] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy,
Federico Lebrón, and Sumit Sanghai. 2023. GQA: Training General-
ized Multi-Query Transformer Models from Multi-Head Checkpoints.
arXiv:2305.13245 [cs.CL]

[38] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer:
The Long-Document Transformer. arXiv:2004.05150 [cs.CL]

[39] Ganesh Bikshandi and Jay Shah. 2023. A Case Study in CUDA Kernel
Fusion: Implementing FlashAttention-2 on NVIDIA Hopper Architec-
ture using the CUTLASS Library. arXiv:2312.11918 [cs.LG]

[40] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.
2019. Generating Long Sequences with Sparse Transformers.
arXiv:1904.10509 [cs.LG]

[41] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma,
Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi
Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du,
Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael
Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya,
Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne
Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiri-
donov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat,
Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM:
Scaling Language Modeling with Pathways. CoRR abs/2204.02311
(2022). https://doi.org/10.48550/arXiv.2204.02311 arXiv:2204.02311

[42] Tri Dao. 2023. FlashAttention-2: Faster Attention with Better Paral-
lelism and Work Partitioning. arXiv:2307.08691 [cs.LG]

[43] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
2024. FLASHATTENTION: fast and memory-efficient exact attention
with IO-awareness. In Proceedings of the 36th International Conference
on Neural Information Processing Systems (New Orleans, LA, USA)
(NIPS ’22). Curran Associates Inc., Red Hook, NY, USA, Article 1189,
16 pages.

[44] Tyler Griggs, Xiaoxuan Liu, Jiaxiang Yu, Doyoung Kim, Wei-Lin Chi-
ang, Alvin Cheung, and Ion Stoica. 2024. Mélange: Cost Efficient
Large Language Model Serving by Exploiting GPU Heterogeneity.
arXiv:2404.14527 [cs.DC] https://arxiv.org/abs/2404.14527

[45] Cong Guo, Rui Zhang, Jiale Xu, Jingwen Leng, Zihan Liu, Ziyu Huang,
Minyi Guo, HaoWu, Shouren Zhao, Junping Zhao, and Ke Zhang. 2024.
GMLake: Efficient and Transparent GPUMemory Defragmentation for
Large-scale DNN Training with Virtual Memory Stitching. In Proceed-
ings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (La Jolla,
CA, USA) (ASPLOS ’24). Association for Computing Machinery, New
York, NY, USA, 450–466. https://doi.org/10.1145/3620665.3640423

https://github.com/Dao-AILab/flash-attention
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://crfm.stanford.edu/2023/10/12/flashdecoding.html
https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://github.com/NVIDIA/TensorRT-LLM/issues/75
https://github.com/NVIDIA/TensorRT-LLM/issues/75
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/vllm-project/vllm/issues/1880
https://github.com/vllm-project/vllm/issues/1880
https://github.com/Dao-AILab/flash-attention/pull/824
https://github.com/Dao-AILab/flash-attention/pull/824
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://www.bing.com/chat
https://huggingface.co/datasets/ccdv/arxiv-summarization
https://huggingface.co/datasets/ccdv/arxiv-summarization
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
https://github.com/vllm-project/vllm/blob/main/csrc/cache_kernels.cu
https://github.com/vllm-project/vllm/blob/main/csrc/cache_kernels.cu
https://github.com/flashinfer-ai/flashinfer/commit/85b1878996a29814f674ee5000facb1e2e763d9a
https://github.com/flashinfer-ai/flashinfer/commit/85b1878996a29814f674ee5000facb1e2e763d9a
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://github.com/vllm-project/vllm/issues/6348#issuecomment-2540969988
https://github.com/vllm-project/vllm/issues/6348#issuecomment-2540969988
https://github.com/vllm-project/vllm/pull/2377
https://github.com/vllm-project/vllm/pull/2377
https://github.com/features/copilot
https://bard.google.com
https://github.com/Dao-AILab/flash-attention/commit/54e80a3829c6d2337570d01e78ebd9529c02d342
https://github.com/Dao-AILab/flash-attention/commit/54e80a3829c6d2337570d01e78ebd9529c02d342
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://nvidia.github.io/open-gpu-doc/pascal/gp100-mmu-format.pdf
https://nvidia.github.io/open-gpu-doc/pascal/gp100-mmu-format.pdf
https://github.com/vllm-project/vllm/pull/9078
https://github.com/vllm-project/vllm/pull/9078
https://github.com/vllm-project/vllm/pull/3462
https://github.com/vllm-project/vllm/pull/3462
https://replit.com/site/ghostwriter
https://github.com/vllm-project/vllm/issues/9006#issue-2559831134
https://github.com/vllm-project/vllm/issues/9006#issue-2559831134
https://github.com/vllm-project/vllm/pull/3005/
https://github.com/vllm-project/vllm/pull/3005/
https://huggingface.co/text-generation-inference
https://huggingface.co/text-generation-inference
https://github.com/HazyResearch/ThunderKittens
https://github.com/HazyResearch/ThunderKittens
https://github.com/vllm-project/vllm/pull/4353
https://github.com/vllm-project/vllm/pull/4353
https://github.com/vllm-project/vllm/pull/6102
https://github.com/vllm-project/vllm/pull/6102
https://huggingface.co/01-ai/Yi-34B-200K
https://huggingface.co/01-ai/Yi-6B-200K
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://arxiv.org/abs/2308.16369
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2312.11918
https://arxiv.org/abs/1904.10509
https://doi.org/10.48550/arXiv.2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2404.14527
https://arxiv.org/abs/2404.14527
https://doi.org/10.1145/3620665.3640423

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramchandran Ramjee, & Ashish Panwar

[46] Connor Holmes, Masahiro Tanaka, Michael Wyatt, Ammar Ahmad
Awan, Jeff Rasley, Samyam Rajbhandari, Reza Yazdani Aminabadi,
Heyang Qin, Arash Bakhtiari, Lev Kurilenko, and Yuxiong He. 2024.
DeepSpeed-FastGen: High-throughput Text Generation for LLMs via
MII and DeepSpeed-Inference. arXiv:2401.08671 [cs.PF]

[47] Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu,
kangdi chen, Yuhan Dong, and Yu Wang. 2024. FlashDecoding++:
Faster Large Language Model Inference with Asynchronization, Flat
GEMM Optimization, and Heuristics. In Proceedings of Machine Learn-
ing and Systems, P. Gibbons, G. Pekhimenko, and C. De Sa (Eds.), Vol. 6.
148–161. https://proceedings.mlsys.org/paper_files/paper/2024/file/
5321b1dabcd2be188d796c21b733e8c7-Paper-Conference.pdf

[48] Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng Chen, Jiang Xu,
Shuang Chen, Hao Feng, Chenxi Wang, Sa Wang, Yungang Bao, et al.
2024. Inference without Interference: Disaggregate LLM Inference
for Mixed Downstream Workloads. arXiv preprint arXiv:2401.11181
(2024).

[49] Aditya K Kamath, Ramya Prabhu, Jayashree Mohan, Simon Peter,
Ramachandran Ramjee, and Ashish Panwar. 2024. POD-Attention:
Unlocking Full Prefill-Decode Overlap for Faster LLM Inference.
arXiv:2410.18038 [cs.LG] https://arxiv.org/abs/2410.18038

[50] Ferdi Kossmann, Bruce Fontaine, Daya Khudia, Michael Cafarella,
and Samuel Madden. 2024. Is the GPU Half-Empty or Half-Full?
Practical Scheduling Techniques for LLMs. arXiv:2410.17840 [cs.LG]
https://arxiv.org/abs/2410.17840

[51] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Sto-
ica. 2023. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In Proceedings of the 29th Symposium
on Operating Systems Principles (Koblenz, Germany) (SOSP ’23). As-
sociation for Computing Machinery, New York, NY, USA, 611–626.
https://doi.org/10.1145/3600006.3613165

[52] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. 2016. Coordinated and Efficient Huge Page
Management with Ingens. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16). USENIX Association,
Savannah, GA, 705–721. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/kwon

[53] Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. 2024.
InfiniGen: Efficient Generative Inference of Large Language Models
with Dynamic KV Cache Management. arXiv:2406.19707 [cs.LG]
https://arxiv.org/abs/2406.19707

[54] Da Ma, Lu Chen, Situo Zhang, Yuxun Miao, Su Zhu, Zhi Chen, Hong-
shen Xu, Hanqi Li, Shuai Fan, Lei Pan, and Kai Yu. 2024. Compressing
KV Cache for Long-Context LLM Inference with Inter-Layer Attention
Similarity. arXiv:2412.02252 [cs.CL] https://arxiv.org/abs/2412.02252

[55] Saaduddin Mahmud, Mason Nakamura, and Shlomo Zilberstein. 2024.
MAPLE: A Framework for Active Preference Learning Guided by Large
Language Models. arXiv:2412.07207 [cs.LG] https://arxiv.org/abs/
2412.07207

[56] Yixuan Mei, Yonghao Zhuang, Xupeng Miao, Juncheng Yang, Zhi-
hao Jia, and Rashmi Vinayak. 2024. Helix: Distributed Serving
of Large Language Models via Max-Flow on Heterogeneous GPUs.
arXiv:2406.01566 [cs.LG] https://arxiv.org/abs/2406.01566

[57] XupengMiao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin Cui,
and Zhihao Jia. 2023. SpotServe: Serving Generative Large Language
Models on Preemptible Instances. arXiv:2311.15566 [cs.DC] https:
//arxiv.org/abs/2311.15566

[58] Ajay Nayak, Pratheek B., Vinod Ganapathy, and Arkaprava Basu. 2021.
(Mis)managed: A Novel TLB-based Covert Channel on GPUs. In Pro-
ceedings of the 2021 ACM Asia Conference on Computer and Commu-
nications Security (Virtual Event, Hong Kong) (ASIA CCS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 872–885.
https://doi.org/10.1145/3433210.3453077

[59] Matthew Nicely and NVIDIA. 2024. Accelerating Transformers with
NVIDIA cuDNN 9. https://developer.nvidia.com/blog/accelerating-
transformers-with-nvidia-cudnn-9/

[60] NVIDIA. 2024. CUDA C++ Programming Guide. https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html

[61] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023).
https://doi.org/10.48550/arXiv.2303.08774 arXiv:2303.08774

[62] Ashish Panwar, Sorav Bansal, and K. Gopinath. 2019. HawkEye: Effi-
cient Fine-Grained OS Support for Huge Pages. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (Providence, RI, USA)
(ASPLOS ’19). Association for Computing Machinery, New York, NY,
USA, 347–360. https://doi.org/10.1145/3297858.3304064

[63] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Íñigo
Goiri, Saeed Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient
Generative LLM Inference Using Phase Splitting. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA).
118–132. https://doi.org/10.1109/ISCA59077.2024.00019

[64] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014. Archi-
tectural support for address translation on GPUs: designing memory
management units for CPU/GPUs with unified address spaces. In Pro-
ceedings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (Salt Lake City,
Utah, USA) (ASPLOS ’14). Association for Computing Machinery, New
York, NY, USA, 743–758. https://doi.org/10.1145/2541940.2541942

[65] B Pratheek, Neha Jawalkar, and Arkaprava Basu. 2022. Designing
Virtual Memory System of MCM GPUs. In 2022 55th IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). 404–422. https:
//doi.org/10.1109/MICRO56248.2022.00036

[66] Rya Sanovar, Srikant Bharadwaj, Renee St. Amant, Victor Rühle, and
Saravan Rajmohan. 2024. Lean Attention: Hardware-Aware Scal-
able Attention Mechanism for the Decode-Phase of Transformers.
arXiv:2405.10480 [cs.AR] https://arxiv.org/abs/2405.10480

[67] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ra-
mani, and Tri Dao. 2024. FlashAttention-3: Fast and Accurate Attention
with Asynchrony and Low-precision. (2024).

[68] Noam Shazeer. 2019. Fast Transformer Decoding: One Write-Head is
All You Need. arXiv:1911.02150 [cs.NE]

[69] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin,
Beidi Chen, Percy Liang, Christopher Ré, Ion Stoica, and Ce Zhang.
2023. FlexGen: high-throughput generative inference of large language
models with a single GPU. In Proceedings of the 40th International
Conference on Machine Learning (Honolulu, Hawaii, USA) (ICML’23).
JMLR.org, Article 1288, 23 pages.

[70] Seunghee Shin, Michael LeBeane, Yan Solihin, and Arkaprava Basu.
2018. Neighborhood-Aware Address Translation for Irregular GPU Ap-
plications. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 352–363. https://doi.org/10.1109/MICRO.
2018.00036

[71] Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhi-
nav Bhatele. 2024. Loki: Low-rank Keys for Efficient Sparse Attention.
arXiv:2406.02542 [cs.LG] https://arxiv.org/abs/2406.02542

[72] Foteini Strati, Sara Mcallister, Amar Phanishayee, Jakub Tarnawski,
and Ana Klimovic. 2024. DéjàVu: KV-cache Streaming for Fast, Fault-
tolerant Generative LLM Serving. arXiv:2403.01876 [cs.DC] https:
//arxiv.org/abs/2403.01876

[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017.
Attention is All you Need. In Advances in Neural Information Pro-
cessing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran As-
sociates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[74] Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and
Yang Liu. 2023. OpenChat: Advancing Open-source Language Models

https://arxiv.org/abs/2401.08671
https://proceedings.mlsys.org/paper_files/paper/2024/file/5321b1dabcd2be188d796c21b733e8c7-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/5321b1dabcd2be188d796c21b733e8c7-Paper-Conference.pdf
https://arxiv.org/abs/2410.18038
https://arxiv.org/abs/2410.18038
https://arxiv.org/abs/2410.17840
https://arxiv.org/abs/2410.17840
https://doi.org/10.1145/3600006.3613165
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2406.19707
https://arxiv.org/abs/2412.02252
https://arxiv.org/abs/2412.02252
https://arxiv.org/abs/2412.07207
https://arxiv.org/abs/2412.07207
https://arxiv.org/abs/2412.07207
https://arxiv.org/abs/2406.01566
https://arxiv.org/abs/2406.01566
https://arxiv.org/abs/2311.15566
https://arxiv.org/abs/2311.15566
https://arxiv.org/abs/2311.15566
https://doi.org/10.1145/3433210.3453077
https://developer.nvidia.com/blog/accelerating-transformers-with-nvidia-cudnn-9/
https://developer.nvidia.com/blog/accelerating-transformers-with-nvidia-cudnn-9/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1109/ISCA59077.2024.00019
https://doi.org/10.1145/2541940.2541942
https://doi.org/10.1109/MICRO56248.2022.00036
https://doi.org/10.1109/MICRO56248.2022.00036
https://arxiv.org/abs/2405.10480
https://arxiv.org/abs/2405.10480
https://arxiv.org/abs/1911.02150
https://doi.org/10.1109/MICRO.2018.00036
https://doi.org/10.1109/MICRO.2018.00036
https://arxiv.org/abs/2406.02542
https://arxiv.org/abs/2406.02542
https://arxiv.org/abs/2403.01876
https://arxiv.org/abs/2403.01876
https://arxiv.org/abs/2403.01876
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

vAttention: Dynamic Memory Management for Serving LLMs ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

with Mixed-Quality Data. arXiv:2309.11235 [cs.CL]
[75] Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe

Liu, and Xin Jin. 2023. Fast Distributed Inference Serving for Large
Language Models. arXiv:2305.05920 [cs.LG]

[76] Mengdi Wu, Xinhao Cheng, Oded Padon, and Zhihao Jia. 2024. A
Multi-Level Superoptimizer for Tensor Programs. arXiv:2405.05751

[77] Zihao Ye, Lequn Chen, Ruihang Lai, Yilong Zhao, Size Zheng, Junru
Shao, Bohan Hou, Hongyi Jin, Yifei Zuo, Liangsheng Yin, Tianqi Chen,
and Luis Ceze. 2024. Accelerating Self-Attentions for LLM Servingwith
FlashInfer. https://flashinfer.ai/2024/02/02/introduce-flashinfer.html

[78] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and
Byung-Gon Chun. 2022. Orca: A Distributed Serving System for
Transformer-Based Generative Models. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). USENIX Asso-
ciation, Carlsbad, CA, 521–538. https://www.usenix.org/conference/
osdi22/presentation/yu

[79] Zhenkai Zhang, Tyler Allen, Fan Yao, Xing Gao, and Rong Ge. 2023.
TunneLs for Bootlegging: Fully Reverse-Engineering GPU TLBs for
Challenging Isolation Guarantees of NVIDIA MIG. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications
Security (Copenhagen, Denmark) (CCS ’23). Association for Computing
Machinery, New York, NY, USA, 960–974. https://doi.org/10.1145/
3576915.3616672

[80] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lian-
min Zheng, Ruisi Cai, Zhao Song, Yuandong Tian, Christopher

Ré, Clark Barrett, Zhangyang "Atlas" Wang, and Beidi Chen. 2023.
H2O: Heavy-Hitter Oracle for Efficient Generative Inference of
Large Language Models. In Advances in Neural Information Pro-
cessing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates, Inc., 34661–
34710. https://proceedings.neurips.cc/paper_files/paper/2023/file/
6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf

[81] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff
Huang, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Sto-
ica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. 2024.
SGLang: Efficient Execution of Structured Language Model Programs.
arXiv:2312.07104 [cs.AI] https://arxiv.org/abs/2312.07104

[82] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. 2024. DistServe: Disaggregating
Prefill and Decoding for Goodput-optimized Large Language Model
Serving. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 24). USENIX Association, Santa Clara, CA, 193–
210. https://www.usenix.org/conference/osdi24/presentation/zhong-
yinmin

[83] Kan Zhu, Yilong Zhao, Liangyu Zhao, Gefei Zuo, Yile Gu, Dedong Xie,
Yufei Gao, Qinyu Xu, Tian Tang, Zihao Ye, Keisuke Kamahori, Chien-
Yu Lin, Stephanie Wang, Arvind Krishnamurthy, and Baris Kasikci.
2024. NanoFlow: Towards Optimal Large Language Model Serving
Throughput. arXiv:2408.12757 [cs.DC] https://arxiv.org/abs/2408.
12757

https://arxiv.org/abs/2309.11235
https://arxiv.org/abs/2305.05920
https://arxiv.org/abs/2405.05751
https://flashinfer.ai/2024/02/02/introduce-flashinfer.html
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://doi.org/10.1145/3576915.3616672
https://doi.org/10.1145/3576915.3616672
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ceefa7b15572587b78ecfcebb2827f8-Paper-Conference.pdf
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://www.usenix.org/conference/osdi24/presentation/zhong-yinmin
https://arxiv.org/abs/2408.12757
https://arxiv.org/abs/2408.12757
https://arxiv.org/abs/2408.12757

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramchandran Ramjee, & Ashish Panwar

A Artifact Appendix
A.1 Abstract
vAttention is a simpler, portable and performant alternative
to PagedAttention for dynamicmemorymanagement in LLM
serving systems. This artifact contains instructions to install
vAttention and scripts to reproduce key results of our paper
(Figures 2, 3, 4, 6, 7, 8, 9, 11). The scripts are configured to run
three large language models: Yi-6B, Llama-3-8B and Yi-34B.

A.2 Artifact check-list (meta-information)
• Algorithm: Dynamic memory management for serving
LLMs.
• Run-time environment: CUDA 12.1, Python 3.10, PyTorch
2.3.0.
• Hardware: Two NVLink connected NVIDIA A100 GPUs
with 80GB memory each.
• Disk space required: 200GB.
• Time needed to prepare workflow: 1 hour.
• Time needed to complete experiments: 1-2 days.
• Publicly available?: Yes
• Archived DOI?: https://doi.org/10.5281/zenodo.14048692

A.3 Description
A.3.1 How to access. Clone the artifact as follows:
$ git clone https://github.com/microsoft/vattention

A.3.2 Hardware dependencies. Running Yi-6B requires
one NVIDIA A100 GPU with 80GB memory while the other
two models require two NVLink-connected A100 GPUs with
80GB memory each.

A.3.3 Software dependencies. Requires PyTorch 2.3.0
and CUDA 12.1 (later CUDA versions may or may not work).

A.3.4 Expected runtime. Figures 2, 3, and 11 should take
a few minutes each. Figures 4, 7 should take about 1 hour
each. Figure 6 requires approximately 3 hours. Figures 8 and
9 may consume more than 12 hours each.

A.4 Installation
Move to the directory containing artifact scripts, create and
activate a conda environment, then install the artifact as
follows:
$ cd vattention/scripts/artifact_asplos25/
$ conda create -n vattn python=3.10
$ conda activate vattn
$ (vattn) ./install.sh

vattention/scripts/artifact_asplos25/README.md file
provides detailed installation instructions.

A.5 Alternate Setup: Docker Image
We also provide a docker image for vAttention with all its
dependencies pre-installed. To access the docker image, you

need to have Docker and NVIDIA Docker installed on your
system. You can then launch the docker container and navi-
gate to the folder containing vAttention artifact, as follows:
$ docker run --gpus all -it \

-p 8181:8181 --rm --ipc=host --cap-add=SYS_ADMIN \
rnp1910/vattention:asplos_25_pytorch_run

$ cd /workspace/vattention/scripts/artifact_asplos25

Then follow the experiment workflow detailed in A.7

A.6 Accessing Llama-3-8B
Accessing Llama-3-8B requires logging into huggingface
with the user’s private token (HF_TOKEN below). Login as
follows before any experiment:
$ (vattn) huggingface-cli login --token HF_TOKEN

A.7 Experiment workflow
You can launch all experiments at once or individually as:
$ (vattn) ./run_all.sh

OR
$ (vattn) ./run_figure_2.sh
$ (vattn) ./run_figure_3.sh

A.8 Evaluation and expected results
The raw output logs and the final plots will be redirected to
./logs. and ./plots/ subdirectories within the main arti-
fact directory vattention/scripts/artifact_asplos25/.
The plots are in the same format as the paper and can be
compared directly. The expected result is that non-paged or
vAttention based configurations would perform better than
the PagedAttention counterparts, especially at longer con-
text lengths. However, the exact numbers may differ from the
paper depending on GPUs and software libraries installed
on the experiment system.

A.9 Experiment customization
Reproducing Figures 8 and 9 of the paper requires running
a large number of requests and hence these experiments
can take more than 24 hours to complete. To reduce the
experimental time, we have configured their scripts to run
with a smaller number of requests (100 each) by default. If
you want to run the full trace, execute these scripts with
the --full argument, i.e., ./run_figure_8.sh --full and
./run_figure_9.sh --full. If twoNVLink connectedGPUs
aren’t available, update run scripts to avoid running Llama-3-
8B and Yi-34B. You can also configure Llama-3-8B to run on a
single GPU by setting --model_tensor_parallel_degree
to 1 in the ./helpers/common.sh file. Note that such changes
would likely impact the absolute performance numbers con-
siderably but vAttention is still expected to perform better
than PagedAttention.

https://docs.docker.com/engine/installation/
https://github.com/NVIDIA/nvidia-docker/

	Abstract
	1 Introduction
	2 Background
	2.1 Large Language Models
	2.2 Fragmentation and PagedAttention

	3 Issues with the PagedAttention Approach
	3.1 Requires Re-writing the Attention Kernel
	3.2 Adds Redundancy in the Serving Framework
	3.3 Performance Overhead

	4 Insights into LLM Serving Systems
	5 vAttention: Design and Implementation
	5.1 Design Overview
	5.2 Leveraging CUDA Virtual Memory Support
	5.3 Serving LLMs with vAttention

	6 Optimizations
	6.1 Hiding Latency of Memory Allocation
	6.2 Mitigating Internal Fragmentation

	7 Evaluation
	7.1 Prefill Evaluation
	7.2 Decode Evaluation
	7.3 End-to-end Performance: Offline Scenarios
	7.4 End-to-end Performance: Online Scenarios
	7.5 Exemplifying Portability: FlashAttention-3
	7.6 Ablation Studies

	8 Discussion
	8.1 Managing KV cache via Unified Memory
	8.2 Reducing Fragmentation via Tensor Slicing
	8.3 Programming Effort

	9 Related Work
	10 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Alternate Setup: Docker Image
	A.6 Accessing Llama-3-8B
	A.7 Experiment workflow
	A.8 Evaluation and expected results
	A.9 Experiment customization

