
Towards Practical Page Placement for a Green
Memory Manager

Ashish Panwar and K. Gopinath
Indian Institute of Science

{ashish.panwar, gopi}@csa.iisc.ernet.in

Abstract—Increased performance demand of modern appli-
cations has resulted in large memory modules and higher
performance processors in computing systems. Power consump-
tion becomes an important aspect when these resources go
underutilized in a running system; e.g. during idle periods or
lighter workloads. CPUs have come a long way in optimizing
away the unnecessary power consumption in both hardware
and software for such scenarios through solutions like Dynamic
Voltage/Frequency Scaling. However, support for memory power
optimization is still missing in modern operating systems despite
hardware support being available for many years in the form
of multiple power states and techniques like Partial Array Self-
Refresh.

In this work, we explore the behavior of Linux memory
manager and report that even at 10% of memory utilization,
there are references to all physical memory banks in a long
running system due to random page allocation and ignorance of
memory bank boundaries. These references can be consolidated
to a subset of memory banks by using page migration techniques.
Unfortunately, migration of large contiguous blocks is often
restricted due to the presence of unmovable pages primarily
owned by kernel.

We provide some techniques for utilizing the hardware facili-
tated Partial Array Self-Refresh by introducing bank awareness
in the existing buddy allocation framework of Linux memory
manager as well as for improving the page migration support
of large contiguous blocks. Through a set of simple changes in
Linux VM, we have been able to reduce the number of refer-
enced memory banks significantly. Memory-hotplug framework,
which relies on page migration of large contiguous blocks, also
shows significant improvement in terms of number of remov-
able memory sections. Benchmark results show no performance
degradation in the modified kernel which makes the proposed
solution desirable.

I. INTRODUCTION

Modern applications are growing in size and complexity at
an unprecedented rate. It requires more memory and higher
performance processors in all varieties of systems, ranging
from small mobile devices to large scale server systems.
Smart-phone devices are being shipped with multi-core proces-
sors and many GBs of memory while servers exist with TBs
of main memory. Since systems are provided with plentiful
resources, power consumption becomes a considerable factor
when these devices stay idle. Google’s latest Doze power
management project [2] for Android M, which focuses on
power optimization of idle devices, is a good indicator of
growing concerns in this direction. CPUs have attracted a
major focus of power optimization techniques primarily due to
their significant contribution in overall system power. DVFS

has been a successful technique in this context where hardware
facilitated power modes are managed by operating systems de-
pending upon the workloads. Intrinsically such optimizations
make main memory a significant contributor in total system
power during low workloads (or idle periods) e.g., 25%-40%
in server systems [5, 17]. However, the main focus of memory
power optimization till date has been on hardware resulting
in memory modules supporting a wide range of power man-
agement features. Recent low power DDR3 SDRAMs support
more than 10 different power states [4], management of which
is typically handled by memory controllers.

Physical memory modules are organized in multiple banks
each of which is a contiguous array of addresses. Such an
organization allows memory to be optimized for power (via
multiple power-states for individual banks) and performance
(via bank-parallelism) at the same time. Some of the power
states are shown in table-I along with their relative power
consumption against peak power. Power savings are achieved
by disabling some hardware circuitry or by reducing the
current supply to memory banks in low power modes. For
example, refreshing the DRAM capacitors is a very critical
operation to preserve memory content. While it is normally
done with the device clock, a bank in Self-Refresh mode
makes use of its internal refresh counter for refreshing the
capacitors and does not rely on the clock. Partial Array Self-
Refresh (PASR), which allows refreshing only a subset of
memory banks, is another way of reducing memory power
consumption but needs to be handled carefully as it results in
data loss of banks that are not being refreshed. Brandt et al. [9]
proposes several implementation methodologies for reducing
DRAM power consumption via PASR. In this paper, we will
be working with Bank-Selective PASR where each memory
bank can be put to Deep-Power-Down mode independently of
other banks.

Operating systems can make use of data retention low power
modes as well as PASR. For data retaining modes, it is required
to control memory references in a way so that active pages
reside on a subset of memory banks. However, it requires
tracking the working set of processes in a running system
which is a costly operation as physical memory references
are transparent to operating systems. Though this information
can be acquired on most platforms from page table reference
bit [6], it involves a costly operation of traversing the entire
virtual address space of processes and their page tables,
clearing the reference bit for each page frame and flushing the

Power State Relative Power Consumption
Read/Write 100 %
Active-Idle 63%

Self-Refresh 7%
Deep-Power-Down <1%

TABLE I: Relative power consumption of mobile DRAM
power states [4].

TLBs. A sequential page table scan takes around 36 cycles per
page table entry for collecting this information on a 3.0 GHz
processor [19]. Such heavy duty operations are not practical
for memory power optimization as they are more likely to
result in unnecessary overhead or perhaps even more power
consumption. Sacrificing the performance of memory manager
is not a viable option in many situations especially when
memory power is a lesser concern. Hardware can also help
in collecting this information with much less overhead but
such support is not available in traditional architectures.

For better utilization of PASR, a page allocator needs to
be aware of memory bank boundary information. Memory
controller can put unused banks to Deep-Power-Down mode
without worrying about data loss if page allocations are
consolidated to a subset of banks. In a long running systems,
when in-use pages are scattered throughout the entire physical
address space, page migration can be used to reduce the
number of in-use memory banks. Linux already has a page
migration framework (as part of memory-hotplug 1) that op-
erates on memory sections of 128MB (physically contiguous)
each that can be used for this purpose. However, under the
current memory management policies, this page migration is
often not possible because of unmovable pages and requires
policies to improve it for effective power management.

In this work, we present simple page placement algorithms
for introducing power management in Linux memory manager.
Primary contributions of this paper are -

• Providing an overview of how current Linux page allo-
cator obstructs memory-hotplug and hardware facilitated
low power modes for memory.

• Analyzing the challenges with respect to memory power
management in multi-core systems and modern applica-
tions.

• Design and implementation of a few page placement
algorithms for improving memory-hotplug and memory
power management in Linux.

• Evaluating the performance of our proposed solution.

II. Related Work
Power management schemes developed over the years can

be broadly classified in two categories. One, solutions that
try to optimize memory power consumption per process by
utilizing hardware facilitated low power modes with data
retention. It is generally achieved by consolidating memory

1Memory-hotplug requires a memory section to be removable (i.e., all its
in-use pages should be movable) before offlining it. For simplicity, we refer
to removability of memory sections as memory-hotplug in this paper.

references (especially working set) of applications to a subset
of memory banks. On the other hand, some techniques try to
limit the number of in-use memory banks for all processes
and focus on facilitating Deep-Power-Down mode. We take
the later approach and try to minimize the number of memory
banks allocated and leave the management of low power data
retention modes to hardware.

David et. al. [10] uses DVFS (similar to what is used for
power optimization of CPUs) to adaptively change the voltage
and frequency of memory modules based on memory traffic
to reduce memory power consumption. Jantz et. al. [17], in
a recent work, facilitates collaboration between applications
and host system by introducing a new abstraction trays inside
each memory zone to organize separate free lists for each
power-manageable unit. The solution, however, ignores the
size of some crucial kernel data structures which could grow
very large for large memory systems. It also requires a linear
search over the set of trays for page allocation which might
introduce significant overhead in the page allocation path in a
busy system.

Some techniques for incorporating power optimization de-
cisions with context switching have also been discussed.
Delaluz et al. [11] keeps track of memory banks used for
each application and selectively turn them on or off with
each context switch to manage energy consumption of DRAM
per application. Huang et. al. [15] maintains set of power-
manageable units for each task and try to minimize the size
of the union of sets of all tasks by using page migration
and using separate units for heavily shared library pages. It
also synchronizes the transitioning between different power
modes on context switch to alleviate the resynchronization
delay associated with mode transition. Lebeck et. al. [18]
proposes several techniques for power aware page allocation
to manage power states of each memory chip. Hual et. al. [16]
introduces the concept of hot and cold ranks which are created
dynamically by keeping frequently accessed pages on same
ranks using page migration. However, the solution relies on a
modified memory controller to accurately track the memory

Fig. 1: Impact of local node arbitrary page allocation algo-
rithm. Arbitrary allocation spreads allocations over all memory
sections even if few pages are being used (Node-1). Local node
policy allocates pages from the same node as running process
as long as sufficient free memory is available (in this case
Node-0).

0 50 100 150 200 250
Memory Section

Node 0 Node 1

Fig. 2: Memory sections (colored black) being referenced by
kernel in a standard buddy system (i.e., sections that contain
atleast one kernel page each.)

references and such support is not available on commercial
platforms.

A. Garg [12] proposed memory-region based approach
incorporating power manageable region information in buddy
allocator but duplicates the entire zone structure for each
memory region. S. Bhat, in his recent revision [7] of the
same work, eliminates this duplication by capturing power-
manageable hardware units in a data structure parallel to
memory zones. Both these approaches, however rely on an
O(log n) sorting logic in page free path to maintain the order
of free lists. They also migrate pages from lower to higher
memory regions independent of the workloads. Migrating from
one end of memory bank array, irrespective of workloads
running on the system, causes unnecessary migration overhead
in some situations.

One major problem with solutions discussed above is their
inflexibility to meet diverse execution scenarios of modern
multi-core systems. Memory power management is highly
dependent on executing workloads and comes into play only
when there are sufficient idle periods to utilize low power
modes of memory. Even though many of these techniques rely
on page migration, the problem of non-removable memory
sections has not been discussed. This paper addresses these
practical issues associated with memory power management.

III. BACKGROUND

A. Overview of Linux Memory Manager
Linux handles paging operations (allocation and free) at

zone level with the help of a binary buddy allocator. It
maintains MAX ORDER (currently defined as 11) doubly
linked lists in a data structure named as free area in the
kernel source. Each list, from order 0 to MAX ORDER-1,
represents 2order contiguous pages in a single list entry. A
buddy allocator is primarily chosen for its speed as it can
allocate even large chunks of memory in a single lookup on
free area structure as long as free memory is available. Pages
are always allocated from (and added to) the head of free lists
for simplicity.

In a long running system, as processes allocate and free
memory, free lists get randomized which creates two main
problems with respect to memory power management and
memory hotplug -

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

x 10
4

Sample

R
e
fe

re
n
ce

 C
o
u
n
t

1−Thread

16−Threads

Fig. 3: Memory reference pattern of facesim with 1 and
16 threaded execution. Reference count is large as well as
changing rapidly when running with 16 threads.

• Random page allocation from arbitrary memory banks
scatters memory references over all of them. Figure-1
represents the number of in-use pages of each 128MB
memory section on our 32GB 2-node desktop machine
in a long running system. Note that none of the 128MB
memory sections is completely free on Node-1 even
though more than 90% of its pages are free. In this
case, none of the memory banks can be put to Deep-
Power-Down mode. Also note that major proportion of
allocated memory is from Node-0 while most of the
memory on Node-1 is free, reflecting the impact of local
node allocation policies.

• Migrating a page involves copying the page content to
another page and modifying all its corresponding page
table entries to point to the new location. Since kernel
pages are not mapped via page tables, it is not possible
to figure out which virtual pages from kernel address
space map to a given physical page. When an arbitrary
physical page is allocated to the kernel, the entire memory
section that corresponds to it becomes unmovable. It is
very difficult to migrate memory sections due to this
effect in a long running system because most of them
contain some kernel pages. Figure-2 depicts a scenario
where more than 170 out of 256 memory sections contain
atleast one kernel page each.

Linux provides a solution for improving upon fragmentation
and removability of memory sections in the form of an op-
tional ZONE MOVABLE. It creates a zone that is usable only
for movable allocations (i.e., anon/page-cache pages owned
by user applications). Size of this zone is determined by
the movablecore (or kernelcore) parameter specified at boot-
time [13]. Similar to ZONE MOVABLE, we also consider
everything to be unmovable except anonymous and page
cache pages. Later in the paper, we discuss issues related to
ZONE MOVABLE.

B. Challenges on multi-core Systems
Since any combination of processes may be scheduled at a

time on multi-core systems, strategies that minimize the num-
ber of memory banks (i.e., [15]) for individual applications no
longer work in such systems. Modern applications are parallel
in nature which poses another challenge with respect to

memory power optimization. To analyze the memory reference
behavior of parallel applications, we use sequential page table
scan [6], a common technique for tracking the active pages,
for some applications. We calculate reference count for all
threads of an application as the number of referenced bits
corresponding to the page table entries that were set by the
processor in the last 10 milliseconds period. Note that multiple
references for a page are counted as one with the help of page
table reference bit for private pages. However, for a shared
page, reference will be counted once per thread that accessed
it in the given sample. Hence the reference count represents
only a subset of actual memory references. In our experiments,
we make the following observations -

• Working sets grow large in proportion to the thread count
for most applications.

• Working sets change very rapidly in a multi-threaded
execution.

Figure-3, which represents reference count for facesim for
1 and 16-threaded execution (calculated after every 100ms
for a 10ms sample period), shows the complexity of working
sets. A 16-threaded execution for this application accesses
approximately 50% of the pages from its resident set within
each sample, 23% for 8 threads, 13% for 4 threads and a
mere 5% in single threaded run in the average case. Figure-3
also shows that reference count is changing very rapidly for
16-threaded run which makes it even more complex for an
operating system to keep track of pages that can provide idle
periods between successive memory references.

Even if the problem of finding inactive pages may be fea-
sible to solve, it would require heavy computation. Operating
systems generally do not have the luxury of either space or
time to afford such heavy duty operations. Another factor
that makes it hard to achieve idle periods between memory
references is the increasing size of memory banks. A 256MB
memory bank has approximately 65k pages which is likely to
grow even more for future memory modules. Considering the
speed of modern processors, a few active pages are sufficient
to keep an entire memory bank active.

On the contrary, if operations are handled at a higher-level
i.e., at allocation time, references could be consolidated to
a subset of memory banks relatively easily when memory
pressure is not very high. We intend to achieve this in our
design that is discussed in the next section.

IV. DESIGN AND IMPLEMENTATION

The objective in designing a power aware allocation frame-
work is to consolidate memory allocations to a subset of banks.
If bank boundaries are known, page placement can be handled
at different levels -

• Node: In this, memory allocation policies are defined
at node level, on top of memory zones. Linux Memory
Power Management framework by A. Garg [12] and S.
Bhat [7] fall in this category.

• Zone: Memory allocations can be controlled at zone level
also by making the zone buddy allocator aware of bank
boundary information.

Fig. 4: Array-based Bank-Buddy Allocator

• Bank: Most of the proposed solutions (such as [15], [17])
use per bank buddy allocator which reside inside zone and
provide guidance to the allocator at zone level. Array-
based and List-based approaches discussed in this paper
fall under this category.

• Pool: We suggest one alternative solution in the form
of Adaptive-Buddy which manages physical pages in
memory pools to reduce the overhead and complexities
associated with per bank allocators.

However, the actual bank boundary information is not
known on all platforms. On some architectures (like ARM
and PowerPC), it can be acquired via device tree but is
not available on x86 based architectures yet. ACPI 5.0 [1]
mandates the use of Memory Power State Table (MPST) to
provide information of all independently power manageable
memory units which is likely to be available soon. Due to
the lack of actual bank boundary information, we consider
each memory bank to be 256MB2 based on the memory
module size and JEDEC standards [3] for DDR3. However,
for experimental purposes, this is not a problem because
their actual transitioning between power modes is handled
by memory controller which is transparent to OS. Once the
address mapping is fixed, rest of the subsystem does not
require further changes.

A. Array-based Bank-Buddy Allocator

In this approach, each zone, rather than having a single large
free area structure, maintains its free pages in an array of
mm bank structures. Each mm bank structure corresponds to
a contiguous set of physical pages. Pages can be allocated from
any one direction i.e., higher bank number to lower bank or
vice-versa once free lists are initialized. This makes sure that
a completely free bank is not used for a new request as long
as already in-user banks have the capability to satisfy it. We
follow different directions for user and kernel memory to avoid
mixing of movable and unmovable pages which improves
the removability of memory sections. In this context, we are
considering kernel memory from lower to higher banks and
user memory from higher to lower banks as shown in figure-
4.

Over a period of time, all memory banks may be used to
satisfy memory demands of applications. When relatively light
workloads follow a busy session and free pages are released

2JEDEC standardizes 8 memory banks per rank on a memory module. We
have 4GB dual rank DIMMs and hence consider bank size to be 256 MB.

Fig. 5: List-based Bank-Buddy Allocator

to the allocator, migration can be used to move pages from
lower memory banks of user address space to higher banks.

There are two practical issues associated with Array-based
Bank-Buddy allocator-

1) Overhead in Page Allocation Path: For each memory
request, allocator starts scanning the array of memory banks
from one end of bank array. In some situations it is possible to
optimize the run time cost by passing some hints to allocator.
But in the worst case, when most of the memory has been
allocated and banks have very few pages left, the allocator
would end up scanning the entire bank array resulting in an
O(n) operation, where n is the number of memory banks in
the zone.

2) Unnecessary Page Migration Overhead: Keeping ker-
nel memory towards the beginning of bank array eases the task
of migrating large groups of pages owned by user applications.
But if pages are always moved from the lower banks of user
address space to higher banks, it can result in significant
migration overhead as the number of free pages in a bank
depends on the order in which pages are released. It can easily
happen that a lower memory bank requires significantly more
pages to be moved than a higher bank.

There is no impact on the performance of page freeing path
as the page being freed is directly mapped to its corresponding
bank using the page frame number. Cost of freeing a page
remains O(1) for the subsequent solutions as well and will
not be discussed further.

B. List-based Bank-Buddy Allocator
To reduce migration overhead associated with array based

approach, memory banks can be treated as a list of banks. List
based organization provides the flexibility to treat each bank
as an independent unit of memory, irrespective of its position
inside memory zone. Removability of memory sections can be
improved using separate lists for kernel and user memory i.e.,
LIST KERNEL and LIST USER. Free memory banks reside
on a separate list named as LIST FREE. Figure-5 depicts the
list based organization of memory banks.

LIST KERNEL and LIST USER are empty lists at system
start-up and all memory banks belong to LIST FREE. Mem-
ory requests are forwarded to respective lists based on their
migrate types. When a memory request fails from its list, a
bank from LIST FREE is added to the head of that list and
used for subsequent allocations.

Under high memory pressure, when LIST FREE is empty,
if an allocation request fails for a migrate type, free pages from

Name Size (Bytes)
Buddy Bank-Array Bank-List Adaptive-Buddy

zone 1920 68864 71040 5696
pg data t 17152 284928 293632 32256

TABLE II: Size of memory management structures in different
allocators. In NUMA machines, pg data t corresponds to a
memory node and represents its memory layout.

other list are used to satisfy memory requirements to make sure
that allocations do not fail as long as free memory is available.
If a movable type memory request can not be satisfied from
LIST USER, allocation falls back to LIST KERNEL and
behaves exactly like the default fallback routine of standard
buddy system. However, if a non-movable memory page is to
be allocated from LIST USER, we allocate it from a memory
bank which has the highest number of free pages and add this
bank to LIST KERNEL as it becomes non-removable after do-
ing so. Selecting a memory bank carefully from LIST USER
for a non-movable request is very important. In some cases
we observe that an arbitrary selection behaves worse than the
standard buddy allocator with respect to memory-hotplug.

While list based approach helps in reducing the unnecessary
overhead of memory migration by carefully selecting memory
banks which are least occupied as migration candidate, it
does not help with the worst case execution time of memory
allocation. A single allocation request may still result in O(n)
operation under high memory pressure as it requires traversing
the list of banks. However, average runtime can be improved
in following ways -

• Allocate from the most recently used bank: In this,
we try to allocating a page from a memory bank which
resulted in the most recent successful allocation before
falling over the list of memory banks.

• Allocate from a bank with highest free pages: It
involves a kernel thread, whose task is to select a memory
bank which has the maximum probability of satisfying a
memory request (bank with maximum free pages) and
putting it at the head of bank list after some interval.

Both the above optimizations work well under normal exe-
cution environments but fail when memory utilization reaches
high. The first approach is not always fruitful especially when
all the memory banks have very little memory left in their free
lists. A problem with the second approach lies in determining
how frequently the candidate selection should be done to
place it at the head of bank list. If selection is invoked very
frequently, it may result in lock contention over zone structure.
It may not be acceptable in some situations because zone lock
is already one of the most highly contented locks in Linux
kernel. Putting the thread to sleep for a long time can result
in the default behavior i.e., O(n) for a single allocation.

C. Issues with Bank-Buddy Allocators
There are two serious issues with the per bank allocators

discussed above -
• When there are multiple structures, each with its own list

of free pages, it results in an O(n) allocation time in the

Fig. 6: Memory Pools in Adaptive-Buddy Allocator

worst case. Performance is a serious issue when system
starts running out of memory. Such allocation overhead is
not acceptable in most situations and should be avoided.

• Size of memory management structures (e.g., struct mm-
zone) could grow very large if free area is initialized
on each memory bank which in itself is quite large
(1144 bytes for MAX ORDER free lists on x86 64).
When array or list of memory banks is traversed, a
large portion of memory caches may be swiped out
causing performance loss for applications and possibly
OS jitter. The fact that these structures are accessed quite
often in Linux makes it a critical factor. The size of
two most relevant memory management structures for
different implementations is shown in table-II.

D. Adaptive-Buddy Allocator
In this approach, all memory banks belonging to the same

list in List-based approach are merged in a single structure
i.e., memory pool. It reduces the amount of memory occupied
by buddy management structures as there are only three
pools of memory now i.e., POOL KERNEL, POOL USER,
POOL OFFLINE each with its own lists of free pages as
shown in figure-6. In cases where an allocation request can
not be satisfied from its dedicated pool, pages can be taken
from POOL OFFLINE or stolen from other pool. If a page is
allocated from POOL OFFLINE, rest of the pages belonging
to that memory bank are merged with the lists of the pool
based on the migrate type of the allocation request. However,
when a page is to be taken from POOL USER for kernel
memory allocations (when POOL OFFLINE is empty), page
will be allocated from a bank with maximum number of free
pages at the moment.

A Deeper Look at Page Allocation Cost: Adaptive-Buddy
allocates movable pages from POOL USER, POOL FREE
or POOL KERNEL in the same order depending upon the
availability of free pages. This implementation is independent
of the number of memory banks and results in an O(1)
operation (but only for movable pages). While allocating
unmovable pages, it may have to traverse through the movable
banks (when POOL KERNEL and POOL FREE both are
empty) to find a suitable candidate. It results in an O(n)
operation which can be optimized to yield O(1) performance
by maintaining memory banks in a heap like data structure
(on the basis of number of free pages). Such an arrangement
would require some computation every time the number of
free pages is updated in a bank. Considering the fact that
unmovable allocations constitute only a fraction of overall
memory demand, we try to avoid this extra computation.

Experimentally, we observed very few of these O(n) operations
which does not affect the overall performance of memory
manager.

When memory bank crosses zone boundary: Since each
memory node except node-0 has only one populated zone in
a system, there are atmost two such cases when a memory
bank may be spanned by two zones i.e., on the first node. We
always keep these banks in allocation pool for two reasons.
First, it does not impact the number of memory banks that can
be offlined otherwise since some memory is always used from
all zones. Second, it results in a much simpler implementation.

E. Page Migration

It becomes important to migrate pages for operating system
driven policies for effective power management in situa-
tions like the one depicted in figure-1 where even though
most memory is free, references are still scattered. There
are some execution points from where page migration can
be called in a running system i.e., when a process exits
(do exit() in kernel/exit.c), some page caches are dropped
(drop pagecache sb() in kernel/fs/drop caches.c) or dynamic
memory operations. However they are more likely to result in
unnecessary overhead when it comes to migrating large blocks
of memory. Some are them are listed below-

• Not all process exits result in significant reduction in
memory release. It is unwarranted to call page migration
for such processes.

• There are times when do exit is called many times in
a short span (such as during ”make install”). Calling
page migration can create havoc in system performance
for such cases.

• Page caches are dropped by the kernel normally when
page allocations start failing or zone watermarks are
being hit. This happens under heavy memory pressure
situations which is not a good place to worry about
memory power.

• Dynamic memory operations like free, munmap or sbrk
are more costly to invoke page migration because they
are executed even more frequently and often operates on
small memory blocks.

To avoid complexities of a running system, page migration
is done by a separate kernel thread. Its simplified functioning
on a single zone is discussed below -

• In the first scan, it reads the meta-data of all memory
banks which currently belong to POOL USER to figure
out the candidate banks which can be freed in this pass.

No. of Pages Size Average (ns) Worst(ns)
Buddy Adaptive-Buddy Buddy Adaptive-Buddy

1 x 10ˆ4 40 MB 285 267 755 1305
1 x 10ˆ5 400 MB 266 260 988 2596
1 x 10ˆ6 4 GB 260 255 999 20794
2 x 10ˆ6 8 GB 250 255 999 20794
4 x 10ˆ6 16 GB 249 277 999 21432

TABLE III: Comparison between the allocation time of stan-
dard and Adaptive-Buddy.

0 50 100 150 200 250
Memory Section

Node 0 Node 1

Fig. 7: Kernel memory footprint (black sections) with
Adaptive-Buddy.

0

50

100

150

200

250

300

Time

#
 o

f
re

m
o
va

b
le

 s
e
ct

io
n
s

Buddy
Adaptive Buddy

Fig. 8: Comparison between standard and Adaptive-Buddy
page placement on memory section removability.

• Mark all candidate banks as isolated. It is done to restrict
page allocations (that happens during migration) from
candidate banks. Note that isolating the candidate banks
is very crucial to avoid multiple migration for a single
page.

• Call the actual page migration code (do migrate range
from mm/memory hotplug.c) on candidate banks that
involves copying the page content and modifying the page
table entries.

In our experiments, we observed that page migration need
not be invoked very frequently. The thread sleeps for 2 seconds
initially between successive calls but keeps on doubling its
sleep time if consecutive iterations detect no opportunity of
migrating pages. However, maximum sleep time allowed is
60 seconds. Once the thread sleeps for 60 seconds, it keeps
on sleeping for same amount of time between successive
calls unless page migration is needed. Once page migration
is performed, sleep time is again reduced to 2 seconds to be
effective in situations where a lot of memory is being freed
successively.

F. A Potential Solution for Interleaved Memory
The Adaptive-Buddy allocator manages banks in a way that

is independent of their position in memory array. It can provide
a solution for reducing the number of referenced memory
banks even when interleaving is enabled. It can be achieved
by defining sets of memory banks and mapping interleaved
banks to a single set. Memory online and offline operations
have to take place on bank-set rather than individual memory
banks.

However, a practical solution requires information about
the interleaved mapping of memory banks. To the best of
our knowledge, this mapping information is not available to

operating systems which demands further study on this topic.
For a prototype implementation, we define a 2-way mapping
statically in kernel which results in comparable results in terms
of the percentage of offlined memory as compared to the non
interleaved implementation as shown in table-IV.

G. Why not ZONE MOVABLE ?
ZONE MOVABLE was introduced for the purpose of

controlling memory fragmentation. High level memory al-
location policy of Adaptive-Buddy is very similar to
ZONE MOVABLE i.e., restricting unmovable allocations
happening from entire physical memory space. However,
there are some practical issues with it comes to using
ZONE MOVABLE-

• Size of ZONE MOVABLE is determined by a command
line parameter but users are generally not aware of
the memory requirements in advance. Too small a size
may not produce desired results and too big a size can
cause unmovable allocations to fail even if sufficient free
memory is available.

• Some control in still required to prevent random memory
allocations.

Adaptive-Buddy provides the necessary control and keeps
on resizing its memory pools based on the execution environ-
ment. It also makes sure that allocations do not fail as long
as free memory is available.

V. RESULTS

In this section, we discuss the effectiveness of Adaptive-
Buddy towards solving memory-hotplug and power manage-
ment problems. Since we are not concerned about applica-
tion specific behavior in this work, we do not worry much
about what applications are running. However, we use only
realistic workloads (except one synthetic benchmark used
for measuring page allocation time) during our experiments
for a generic evaluation (mostly applications from PARSEC
benchmark suite).

Experimental Setup: Experiments discussed in this pa-
per were run on a desktop workstation machine with two
Intel Nehalam-based Xeon E5620 CPUs with 32GB(8x4GB)
memory. Each CPU has 4 physical cores (8 threads with
hyper-threading enabled) operating at a base frequency of
2.4GHz. Some experiments have also been performed on a
system with 4GB memory (with 128MB bank size) as well
to test Adaptive-Buddy on small memory systems. All the
experiments are on Ubuntu 12.04 with a recent Linux kernel
(version 3.17.4) as default operating system.

A. Memory-Hotplug with Adaptive-Buddy
We use filebench benchmark to generate a large number

of small sized files and execute it on a file system mounted
in physical memory i.e., ramfs. Number of files vary from
1,000 to 4,50,000 between different runs while the size of file
system varies from 1GB to 29GB. When run multiple times, it
deletes the file system which was mounted in the previous run

20

22

24

26

28

30

32

Time

M
e

m
o
ry

 (
G

B
)

Free Memory
Offlined Memory

(a) Without Page Migration

5

10

15

20

25

30

35

Time

M
e

m
o
ry

 (
G

B
)

Free Memory
Offlined Memory

(b) With Page Migration

1 2 3
0

5

10

15

Iteration

M
e
m

o
ry

 (
G

B
)

Offlined Memory
Migrated Memory

(c) Offlined vs Migrated Memory for three different iterations of page migration

Fig. 9: Behavior of an Adaptive-Buddy System.

resulting in a lot of memory freeing operations randomizing
the free lists.

Figure-7 shows the footprint of kernel memory on physical
address space. The snapshot is taken after running the same
sequence of filebench workloads which was used for standard
buddy allocator in figure-2. As shown in the figure, unmovable
memory is placed in contiguous memory sections starting from
the first section of each memory zone which in turn simplifies
the migration of a large contiguous chunks of memory from
user pool.

Figure-8 shows the comparison between standard and
Adaptive-Buddy allocator for the same execution sequence.
Standard buddy allocator does well in the beginning because
a large number of free pages belong to unmovable free
lists at system reboot. These pages were used during system
initialization for loading kernel, kernel modules and by boot-
memory allocator. Once this pool of memory gets saturated,
the impact of Adaptive-Buddy is easily visible against the
standard buddy allocator. In some cases we see as much as
85%-90% improvement in terms of the number of removable
memory sections.

Note that a removable section does not guarantee that all
pages belonging to it can be migrated immediately. Real world
situations are much more subtle and memory migration can
still fail in some situations e.g., under heavy I/O. However,
these conditions are temporal and keeping kernel allocation

Workload
32GB 4GB

Max(%) Average(%) Max(%) Average(%)Non-Interleaved 2-way Interleaved
Light 81 59.5 55.2 64 48
Medium 56 45.7 40.7 45 26

TABLE IV: Percentage of Offlined Memory with Adaptive-
Buddy (and page migration).

on separate physical address space increases the probability
of successfully migrating pages on bank granularity.

B. Power Management with Adaptive-Buddy
Intel provides tools (e.g., power-governer) and libraries

like RAPL (Running Average Power Limit) to measure power
consumption of different system components including DRAM
power. Unfortunately DRAM power measurement support is
available on Sandy-Bridge microprocessor based server sys-
tems only. Due to the lack of actual bank boundary mapping
and power measurement support from hardware, we are unable
to get actual power savings and hence provide results in terms
of offlined memory banks.

We divide the workloads in two categories based on the
memory footprint of all applications running on the system as
below -

• Light : Memory footprint varying between 10%-50%.
• Medium : Memory footprint varying between 30%-80%.
Different workloads were created by running applications

from PARSEC benchmark suite. Applications were run with

Application System Time (ms) User Time (seconds)
Buddy Adaptive-Buddy Buddy Adaptive-Buddy

bodytrack 864 672 290 290
blackscholes 3885 3915 352 352
canneal 7380 7432 297 299
dedup 27843 28363 56 55
facesim 9610 9836 1051 1058
ferret 2042 1900 813 818
fluidanimate 2934 2961 873 876
freqmine 2360 2382 987 981
streamcluster 12319 12614 1052 1094
swaptions 13373 12228 666 639
vips 4478 3848 273 272
x264 1603 1787 211 211

TABLE V: Execution Time of PARSEC Applications.

Test Description Operations per second DifferenceBuddy Adaptive-Buddy
creat-clo File Creations and Closes/second 151816 149883 -1.30%
page test System Allocations & Pages/second 552330 559781 +1.35%
brk test System Memory Allocations/second 3716713 3949383 +6.26%
exec test Program Loads/second 1396 1390 -0.43%
fork test Task Creations/second 3260 3193 -2.05%
link test Link/Unlink Pairs/second 133415 129502 -3.94%
disk rr Random Disk Reads (K)/second 432397 435468 +0.71%
disk rw Random Disk Writes (K)/second 350405 359620 +2.63%
disk wrt Sequential Disk Writes (K)/second 523008 537258 +2.72%
disk src Directory Searches/second 94153 93322 -0.88%
shared memory Shared Memory Operations/second 1054128 1053623 -0.05%
tcp test TCP/IP Messages/second 202990 202461 -0.26%
udp test UDP/IP DataGrams/second 458661 449836 -1.93%
fifo test FIFO Messages/second 1184720 1188516 +0.32%
stream pipe Stream Pipe Messages/second 1167396 1157741 -0.83%
dgram pipe DataGram Pipe Messages/second 1081990 1057350 -2.28%
pipe cpy Pipe Messages/second 1548410 1582370 +2.19%

TABLE VI: Summary of AIM9 Micro-Benchmark Test Results.

largest input set in a single threaded environment to sustain
memory pressure over a long period of time. Other normal
desktop applications like firefox, media player and document
editors were also running in parallel. For medium workload,
we also run a kernel build process on a clean kernel source
tree in addition to the above applications and a few runs of
filebench benchmark by mounting a file system using ramfs
to increase memory pressure. Results summarized in table-IV
are calculated over a period of more than 10 hours of medium
workload and for 2-3 hours of light workload.

C. How Page Migration Helps
In figure-9a, 5 memory banks were more than 90% free after

memory was released at once by applications. Page migration
proves to be very helpful in this situation by quickly migrating
pages from these banks and removing them from the allocation
path. Figure-9b (medium workload) depicts the way migration
works in a running system where a total of 12GB memory
was migrated over the entire duration while total memory
size of all memory banks that were offlined by adding to
POOL OFFLINE amounts to approximately 28GB. Figure-9c
indicates the effectiveness of our candidate selection for page
migration (⇡ 40% pages need to be migrated on average to
offline a memory bank).

D. Adaptive-Buddy vs an Optimal Solution
We can think of a hypothetical optimal solution in terms of

difference between the amount of free and offlined memory
or in terms of percentage for a more generic sense. Let us say
�f is the percentage of free memory and �d is the percentage
of offlined memory. Effectiveness of a solution can be verified
with the following relation between them -

�d ⇡ c ⇤�f

Value of c, which represents the ratio of offlined and free
memory, determines the effectiveness of a solution (higher is
better). An optimal solution which performs ideally in all cases
will keep it as close to 1 as possible. c is varying between 0.75-
0.90 at all times in case of Adaptive-Buddy with migration and

does very well in average case (0.80 for medium and 0.85 for
light workload).

Since the difference between optimal and Adaptive-Buddy
is not very high, we can assume that more sophisticated
analysis on allocation or migration (e.g., Statistical/ Machine
Learning) will not provide substantial improvements over our
methodology.

E. Performance Evaluation
Since physical memory is a very critical resource, changes

in memory management subsystem may cause significant
performance impact. Sometimes it can be very non-intuitive
e.g., page-coloring [19] and performance-isolation [14]. We
study the performance of Adaptive-Buddy with a variety of
benchmarks discussed below.

1) A Synthetic Benchmark: There are no standard bench-
marks available for measuring the speed of page allocation
path for a large number of successive requests3. We design
a synthetic benchmark to test the effectiveness of Adaptive-
Buddy allocation algorithm. There are two components to this
benchmark -

• Source of Memory Allocation: A simple C program
which allocates small chunks of memory (4KB) using
malloc successively. As malloc in itself does not cause
actual page allocation, we write a dummy value into each
page only once to force page allocation and to make
subsequent requests in quick succession. The process
keeps on allocating upto 16GB memory without freeing
anything to create memory pressure.

• Allocation Time Measurement: We instrument the
kernel using SystemTap, a kernel instrumentation
tool, to measure the time taken by rmqueue (in
mm/page alloc.c) function for the above process. Note
that all memory requests generated by this process will
be for O(1) pages as physical pages for a process heap

3page test from AIM9 does measure the speed for O(1) page allocations
but frees the allocated page before making the next request and hence does
not create memory pressure in the system.

are allocated only when they are actually accessed. It is
important since we want to measure the same allocation
sequence for two different kernels. We measure the

rmqueue function as it is the first point of change
between the original and modified kernel.

Timing measurements obtained are shown in table-III. In the
worst-case and especially over a large number of successive al-
locations, Adaptive-Buddy still introduces significant overhead
despite being independent of the number of memory banks
but performs very similar to the standard buddy allocator in
average case. However, this worst case behavior for this bench-
mark appears when POOL USER is free and a memory bank
from POOL OFFLINE is added to it before satisfying current
request. Adding an entire memory bank to the allocation pool
in such a case makes sure that the subsequent requests are
satisfied quickly resulting in good average case performance.
Note that this benchmark is far from a realistic workload and
because the average case scenario is still good, applications
do not reflect any performance impact. We also instrumented
page free operations and found no timing difference between
the two kernels.

2) PARSEC Benchmarks: We test applications from the
PARSEC [8] benchmark suite which consists of 12 different
benchmarks (9 applications and 3 kernels) covering a wide
range of domains to measure the performance of Adaptive-
Buddy on real applications. PARSEC is a good representative
of emerging scientific parallel workloads. Table-V summarizes
execution time taken by the applications with 16-threaded run
of each on vanilla and modified kernels. To understand the
impact of Adaptive-Buddy on TLB and system caches, we
profile PARSEC applications (different run than the timing
tests) using perf. No quantifiable difference was found for the
profiled events of TLB, L1-Cache and Last Level Cache(LLC)
as well.

3) AIM9 Micro-Benchmarks: Finally, AIM9 is used to
profile individual system components separately. It consists of
several micro-benchmarks for exercising different system areas
such as I/O, process, memory, file system and networking.
Table-VI provides a brief description of the tests used for the
experiments along with the results obtained over a 60 seconds
run for each test. For these micro-benchmarks, throughput
varies across different runs even for the same kernel and it
is not feasible to quantify such small differences. However,
when we run each test for a long time and take an aggregate
over different runs, we see no apparent difference between the
two kernels.

The benchmarks discussed above indicates that Adaptive-
Buddy does not have any negative impact on the overall system
performance which makes it a desirable solution. However,
one aspect of its performance i.e., impact on memory latency
still needs to be analyzed which requires exact mapping of the
bank boundaries and could not be done on our platform.

VI. Conclusion
This paper presents several page placement algorithms for

improving power management and memory-hotplug support in

Linux by modifying and inducing bank awareness in standard
buddy allocator. We present the effectiveness of Adaptive-
Buddy toward solving these problems with different use-
cases. Since Adaptive-Buddy shows promising results without
affecting system performance we believe it could be an answer
to the problem of memory power consumption on a variety
of systems. Next we intend to integrate Adaptive-Buddy on
a platform that provides memory bank boundary information
and support for memory power measurement.

REFERENCES

[1] Advance configuration and power interface specification 5.0, 2011.
. http://www.acpi.info/spec50.htm.

[2] Google I/O conference, 2015
. https://events.google.com/io2015/.

[3] JEDEC, DDR3 SDRAM Standard JESD79-3F, JULY 2012.
[4] Mobile dram power-saving features/calculations

. https://www.micron.com/ /media/documents/...note/dram/tn4612.pdf.
[5] The Problem of Power Consumption in Servers, 2008. https://software.

intel.com/en-us/articles/the-problem-of-power-consumption-in-servers.
[6] Looking Inside Memory, Tooling for tracing memory reference patterns.

In Proceedings of the Linux Symposium, Canada, 2010.
[7] Srivatsa S. Bhat. mm: Linux Memory Power Management, 2013.

. https://lwn.net/Articles/568369/.
[8] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis,

Princeton University, January 2011.
[9] Todd Brandt, Tonia Morris, and Khosro Darroudi. Analysis of the pasr

standard and its usability in handheld operating systems such as linux.
[10] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte,

and Onur Mutlu. Memory power management via dynamic volt-
age/frequency scaling. In Proceedings of the 8th ACM International
Conference on Autonomic Computing, ICAC ’11, pages 31–40, New
York, NY, USA, 2011. ACM.

[11] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and
M. J. Irwin. Scheduler-based dram energy management. In Proceedings
of the 39th Annual Design Automation Conference, DAC ’02, pages
697–702, New York, NY, USA, 2002. ACM.

[12] Ankita Garg. mm: Linux VM Infrastructure to support Memory Power
Management, 2011.
. https://lwn.net/Articles/445045/.

[13] Mel Gorman. Create optional ZONE MOVABLE to partition memory
between movable and non-movable pages
. https://lwn.net/Articles/224255/.

[14] Z. Wu R. Pellizzoni H. Yun, R. Mancuso. PALLOC: DRAM Bank-
Aware Memory Allocator for Performance Isolation on Multicore Plat-
forms, RTAS, 2014.

[15] Hai Huang, Padmanabhan Pillai, and Kang G. Shin. Design and
implementation of power-aware virtual memory. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC
’03, pages 5–5, Berkeley, CA, USA, 2003. USENIX Association.

[16] Hai Huang, Kang G. Shin, Charles Lefurgy, and Tom Keller. Improving
energy efficiency by making dram less randomly accessed. In Proceed-
ings of the 2005 International Symposium on Low Power Electronics
and Design, ISLPED ’05, pages 393–398, New York, NY, USA, 2005.
ACM.

[17] Michael R. Jantz, Carl Strickland, Karthik Kumar, Martin Dimitrov,
and Kshitij A. Doshi. A framework for application guidance in virtual
memory systems. In Proceedings of the 9th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’13,
pages 155–166, New York, NY, USA, 2013. ACM.

[18] Alvin R. Lebeck, Xiaobo Fan, Heng Zeng, and Carla Ellis. Power aware
page allocation. In Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IX, pages 105–116, New York, NY, USA, 2000.
ACM.

[19] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page
coloring-based multicore cache management. In Proceedings of the 4th
ACM European Conference on Computer Systems, EuroSys ’09, pages
89–102, New York, NY, USA, 2009. ACM.

