
Towards Practical Page Placement for a

Green Memory Manager

17 December, 2015

Ashish Panwar, K. Gopinath

Indian Institute of Science

Bangalore, India

Agenda

• Motivation

• Background

• Challenges

• Design and Implementation

• Results

• Conclusion and Future Work

Motivation

• Memory consumes significant power in some situations (sometimes upto 40%).

• Proportion of memory power consumption increases in idle states.

• Software hardware cooperative power management (CPU and other subsystems)

makes it even more critical.

• However, such cooperation for memory power optimization is still missing in

traditional systems despite continuous hardware support.

Hardware Support

Fig 1. Overview of Partial Array Self Refresh [1]

Power State Relative Power Consumption

Read/Write 100 %

Active-Idle 63 %

Self-Refresh 7 %

Deep-Power-Down < 1%

Table 1. Relative Power Consumption of different power states [1]

Partial Array Self-Refresh:

 Memory banks can be turned

off to save power.

 Requires operating system

support to avoid data loss.

 Power state transition of

memory banks is typically

transparent to software.

[1] https://www.micron.com/~/media/documents/products/technical-note/dram/e0597e10.pdf

Linux Page Allocator

Fig 2. Layout of Linux Binary Buddy Allocator

 Memory is divided in multiple zones.

 Each memory zone gets its own buddy allocator.

Role of a Memory Manager

 Restrict page allocations to a subset of memory banks.

 Perform migration (or compaction) in order to limit the number of in-use

memory banks in long run (should be kept to minimum as migration itself

will burn some power).

Linux page allocator performs poorly for both requiremets !

Behavior of Linux Page Allocator

(a). All memory sections are in-use for even < 10 % memory usage on Node 1. (b). Sections colored black (172/256) can not be freed because of the presence of

kernel (unmovable) pages.

Fig 3. Impact of arbitrary page allocation of Linux kernel

Arbitrary page allocation causes -

 Memory references to spread over almost all memory banks (even during low workloads).

 A large proportion of memory banks to become unmovable due to the presence of kernel pages.

Challenge

 Working sets are complex, large and rapidly changing on modern hardware.

 Actual memory references are typically transparent to operating systems.

Fig 4. Working set (10ms sample) of facesim with different thread count.

Challenge
 Idle periods are hard to achieve as the number of cores grow large.

 Processing such information in a running system is processor (and hence power) hungry.

Fig 5. Working set (10ms sample) of swaptions with different thread count.

Array based Bank-Buddy Allocator

 Manages free pages of each memory bank individually.

 Allocation from one end of the array.

 Different directions for kernel and user memory allocations.

 Migrate when there is an opportunity.

Fig 6. Array based Bank-Buddy Allocator

When a bank crosses zone boundary

 There are at-most two such possibilities in a system.

 Always keep memory banks that cross zone boundary in-use.

Analyzing Array based Bank-Buddy Allocator

• Cost of Page Allocation : O(n), where n is the number of memory banks spanned by the

zone.

• Unnecessary migration overhead.

If A exits first -

List based Bank-Buddy Allocator

 Helps in reducing migration overhead but the cost of memory allocation

is still high i.e., O(n) in the worst case.

Fig 7. Layout of memory banks in List based Bank-Buddy Allocator

Issues with per Bank Buddy Allocators

 104 bytes per order free lists on x86_64.

 1144 bytes for free_area per memory zone.

 Impact: Size of memory management structures (and hence the kernel image) grows

significantly.

 MICRO-OPTIMIZATION MACRO SIDE-EFFECTS (mainly due to inefficient cache

behavior).

Adaptive-Buddy Allocator

• Merge all banks belonging to same list (from list based design) together to form memory

pools.

• Provides better runtime performance compared to earlier designs.

• Capacity on demand can be met by adding (or removing) banks to (or from) allocation

pools.

Fig 8. Layout of memory pools in Adaptive-Buddy

Page Allocation : O(1)

Page Free : O(1)

Size of mm data structures

0

50

100

150

200

250

300

350

zone pg_data_t

S
iz

e
(k

b
)

mm structures

Buddy Array-based List-based Adaptive-Buddy

Page Migration

• Sort banks in descending order based on the number of free pages.

• Identify candidate banks for migration (break point).

• Isolate candidate banks from allocation pool (to avoid copying more than once).

• Migrate in the sorted order.

Results

Fig 9. Kernel memory footprint (sections colored black) with different allocators

(a). Unmovable memory sections (colored black) with Buddy allocator (b). Unmovable memory sections (colored black) with Adaptive-Buddy allocator

Results

Fig 10. Behavior of Adaptive-Buddy regarding power management

(a). Free vs Offlined memory without page migration
(b). Free vs Offlined memory with page migration

(c). Offlined vs migrated Memory

Results

Workload

32 GB 4 GB

Max

Average Offline Memory(%)

Max

Average Offline Memory(%)

Optimal Adaptive-Buddy Optimal Adaptive-Buddy

Light 81 69 59.5 64 55 48

Medium 56 57 45.7 45 35 26

Workloads –

Light : Memory footprint varying between 10%-50%.

Medium : Memory footprint varying between 30%-80%.

Table 2. Percentage of offline memory on different systems and workloads along with comparison with

a hypothetical optimal solution in the average case.

Performance Evaluation

Application

User Time (seconds) System Time (ms)

Buddy Adaptive-Buddy Buddy Adaptive-Buddy

bodytrack 290 290 864 672

blackscholes 352 352 3885 3915

canneal 297 299 7380 7412

dedup 56 55 27843 28363

facesim 1051 1058 9610 9836

freqmine 987 981 2360 2382

streamcluster 1052 1094 12319 12614

swaptions 666 639 13373 12228

vips 273 272 4478 3848

x264 211 211 1603 1787

PARSEC Benchmark Suite

Table 3. Comparison between the execution time with different allocators for PARSEC applications

Performance Evaluation
AIM9 Microbenchmark Suite

Table 4. Comparison between the execution time with different allocators for PARSEC applications

Test Description

Operations per Second

Difference
Buddy Adaptive-Buddy

creat-clo File creations & closes 151816 149883 -1.30%

page_test System allocations & pages 552330 559781 +1.35%

break_test System memory allocations 3716713 3949383 +6.26%

exec_test Program loads 1396 1390 -0.43%

fork_test Task creations 3260 3193 -2.05%

shared_memory Shared memory operations 1054128 1053623 -0.05%

tcp_test TCP/IP messages 202990 202461 -0.26%

udp_test UDP/IP datagrams 458661 449836 -1.93%

Performance Evaluation
A Synthetic Benchmark:

 Created for testing the page allocation performance for a large number of successive requests

to build memory pressure.

 C program for page allocation and systemtap for timing measurement.

Table 5. Comparison between the average and worst case allocation time of different allocators

 Worst case behavior of Adaptive-Buddy can be improved by using a kernel thread for moving pages of a

memory bank from one pool to another but that solution also has many downsides !

Future Work

 Integrating and testing Adaptive-Buddy on a real hardware.

 Evaluating Adaptive-Buddy in virtualized environments (for capacity on

demand).

 A power friendly buffer cache ?

References
 https://lwn.net/Articles/478049/

 Linux Memory Power Management [S. Bhat 2013].

 Linux VM Infrastructure to support Memory Power Management [A. Garg 2011].

 Jantz, Michael R. and Strickland, Carl and Kumar, Karthik and Dimitrov, Martin and Doshi, ``A Framework for

Application Guidance in Virtual Memory Systems'', VEE 2013.

 David, Howard and Fallin, Chris and Gorbatov, Eugene and Hanebutte, Ulf R. and Mutlu, Onur, ``Memory Power

Management via Dynamic Voltage/Frequency Scaling'', ICAC 2011.

 Huang, Hai and Shin, Kang G. and Lefurgy, Charles and Keller, Tom, ``Improving Energy Efficiency by Making

DRAM Less Randomly Accessed'', ISPLED 2005.

 Huang, Hai and Pillai, Padmanabhan and Shin, Kang G., ``Design and implementation of power-aware virtual

memory'', ATEC 2003.

 Hai Huang, Kang G. Shin, Charles Lefurgy, Karthick Rajamani, Tom Keller, Eric Van Hensbergen, and Freeman

Rawson, "Cooperative Software-Hardware Power Management for Main Memory", published in Lecture Notes in

Computer Science, Power-Aware Computer Systems: 4th International Workshop, PACS 2004, Volume 3471, December, 2005,

pages 61-77.

