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Abstract
Recent processors rely on huge pages to reduce the cost of

virtual-to-physical address translation. However, huge pages

are notorious for creating memory bloat – a phenomenon

wherein the OS ends up allocating more physical memory to

an application than its actual requirement. This extra mem-

ory can be reclaimed by the OS via de-bloating at runtime.

However, we find that current OS-level solutions either lack

support for dynamic memory de-bloating, or suffer from

performance and fairness pathologies while de-bloating.

We address these issues with EMD (Efficient Memory De-

bloating). The key insight in EMD is that different regions

in an application’s address space exhibit different amounts

of memory bloat. Consequently, the tradeoff between mem-

ory efficiency and performance varies significantly within

a given application e.g., we find that memory bloat is typi-

cally concentrated in specific regions, and de-bloating them

leads to minimal performance impact. Hinged on this insight,

EMD employs a prioritization scheme for fine-grained, effi-

cient, and fair reclamation of memory bloat. EMD improves

performance by up to 69% compared to HawkEye — a state-

of-the-art OS-based huge page management system. EMD

also eliminates fairness concerns associated with dynamic

memory de-bloating.

CCS Concepts: • Software and its engineering→ Oper-
ating systems; Virtual memory;
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1 Introduction
The amount of data being generated and consumed is in-

creasing exponentially [41]. Therefore, modern applications

depend on accessing vast amounts of data from the physical

memory [29]. In particular, for each memory access, virtual

memory requires the processor to translate an (application-

visible) virtual address into a (system-visible) physical ad-

dress. Since this virtual-to-physical address translation lies

in the critical path of execution, it can cause a significant

slowdown. For example, Google recently reported that many

of their data-center workloads spend 20-30% of total CPU

cycles in address translation alone [24].

To accelerate this virtual-to-physical address translation,

processors cache recently used addresses in multi-level hard-

ware structures called Translation Lookaside Buffers (TLBs).

A hit in the TLB is fast but processing of TLB misses is very

expensive (as demonstrated by prior works [8, 10, 26, 31, 32,

35, 39, 42]), accounting for 10–40% of total memory access

time [7, 25, 30, 37, 40]. Unfortunately, while the application’s

memory footprint is increasing at an unprecedented rate, it

is not possible to scale up TLB sizes in the same proportion

due to fundamental hardware limitations [12, 38].

Modern processors employ huge pages to alleviate the

cost of virtual-to-physical address translation [20, 26, 28,

31, 32, 38, 44]. A huge page is a larger memory allocation

unit, typically 2MB or 1GB, compared to the standard 4KB

base page. Huge pages enable a single TLB entry to map

significantly larger memory regions. For instance, a 2MB

huge page maps 512 times more memory than a 4KB base

page, thereby increasing the TLB’s effective reach. Addition-

ally, huge pages reduce the depth of page table traversal. On

x86-64 systems, resolving a memory access for a 2MB huge

page typically requires only three levels of page table walks

instead of four, significantly lowering TLB miss costs. By

reducing the frequency and cost of TLB misses, huge pages

can boost application performance substantially [26, 31, 32].

Workloads such as large-scalemachine learningmodels, HPC

simulations, and in-memory databases have demonstrated

performance improvements of 20–50% when huge pages are

effectively utilized [26, 38].

However, the efficient utilization of huge pages demands

robust support from the OS, which remains inadequate in

current systems. This is because while huge pages alleviate

address translation overheads, they introduce several mem-

ory management challenges such as fragmentation, latency
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Figure 1. Illustration of memory bloat with huge pages as-

suming that a huge page consists of 4 base pages. If an ap-

plication accesses only one of the base pages in a huge page

region (left most block in green), the OS ends up allocating 4

base pages worth of physical memory resulting in 3 unused

pages (rightmost boxes).

spikes, fairness concerns in multi-tenant environments, and

memory bloat [2, 4, 15]. Troubleshooting these issues often

leads to disabling huge pages, undermining their potential

benefits. While prior work[26, 31] has tackled various as-

pects of huge page management, we find that no existing

system has satisfactorily addressed the challenge of higher

physical memory requirement of huge pages. Therefore, in

this paper, we aim to tackle this issue, focusing on the inter-

play of memory efficiency and performance.

Memory bloat:We define memory bloat as the unnecessary

physical memory mapped in an application’s page tables

due to the allocation of huge pages (see Figure 1). Memory

bloat can significantly increase an application’s total mem-

ory footprint, especially when memory access patterns are

sparse or when internal fragmentation leaves portions of

huge pages unused. Consequently, huge pages can increase

the cost of deployment, lead to out-of-memory errors or

cause unnecessary swapping.

In this paper, our objective is to mitigate memory bloat in

a way that allows an application to benefit from huge pages

without running into (avoidable) out-of-memory situations.

In particular, our goal is to make sure that an application

enjoys the performance benefits of huge pages as long as

enough physical memory is available. However, when physi-

cal memory is scarce, the OS should be able to reclaim unused

physical memory from huge pages with minimal impact on

performance. Therefore, we focus on managing the tradeoff

betweenmemory bloat and performance at runtime. Towards

this goal, we make the following major contributions:

We first present a broad characterization of existing sys-

tems into three categories based on how they balance huge

page trade-offs. Some systems use coarse-grained measures

relying on end-users to enable or disable huge pages at the

system level - transparent huge pages in Linux is an example

of this category. The second category of systems allow users

to configure a threshold to limit the maximum amount of per-

missible memory bloat – Ingens [26] and FreeBSD [27] rep-

resent this category. The third category represents systems

that deal with memory bloat dynamically e.g., HawkEye [31].

Overall, HawkEye is the only reported solution capable of

managing memory bloat depending on the availability of

physical memory at runtime.

We then show that while HawkEye enables dynamic mem-

ory de-bloating, its strategy is suboptimal and unfair. Specif-

ically, we find that HawkEye performs de-bloating sequen-

tially with an application’s address space, without consider-

ing the distribution of memory bloat across different regions.

This is suboptimal from a performance standpoint because

it can break more huge pages than required. We also show

that HawkEye’s de-bloating strategy can be unfair wherein

it penalizes some applications more than others.

Finally, we present EMD (Efficient Dynamic Memory De-

bloating), a new approach that enables fair and efficient

dynamic memory de-bloating. EMD is based on our key in-

sight that different regions in an application’s address space

exhibit different amounts of memory bloat. Consequently,

the tradeoff between memory efficiency and performance

varies significantly even within a given application e.g., we

find that memory bloat is typically concentrated in certain

regions of an application address space, and de-bloating such

regions first can free up physical memory with little impact

on performance. Based on this insight, EMD employs a prior-

itization scheme for fine-grained, efficient, and fair dynamic

memory de-bloating. We implement EMD in the Linux ker-

nel and demonstrate that it improves performance by up to

69% compared to HawkEye. Additionally, EMD ensures fair-

ness in de-bloating when multiple applications are running

concurrently.

2 Background
2.1 Huge Pages and Associated Challenges
2.1.1 Huge Pages. Huge page is a hardware-software co-
design approach to reduce the overhead of address trans-

lation. They are used to reduce the number of TLB misses

and make page tables shorter, improving performance [26,

31, 38, 44]. Huge pages are commonly deployed via trans-

parent huge pages (commonly referred to as THP) [6]. In

this method, the OS allocates huge pages transparently to

user applications, as and when possible. This approach is

flexible, does not require user involvement and hence is the

most preferred way of deploying huge pages in real-world

systems. Therefore, we focus purely on transparent huge

pages in this paper.

2.1.2 Challenges with Transparent Huge Pages. Trans-
parent huge pages have led to severe performance issues in

several cases e.g., latency spikes, high CPU usage, increased

memory pressure and fairness, etc [3, 5, 15]. These issues

primarily stem from two fundamental requirements. First,

a huge page must be mapped in contiguous physical mem-

ory. However, memory contiguity is difficult for an OS to

maintain in a long-running systems due to fragmentation.
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Figure 2. Tradeoff between performance and memory uti-

lization. Huge pages improve performance but at the expense

of more memory compared to base pages.

Consequently, efforts to de-fragment physical memory lead

to spikes in latency and CPU usage and the lack of conti-

guity creates fairness issues [16, 26]. Secondly, a physical

memory page must be cleared (zero-filled) before it can be

allocated to an application. Since huge pages are larger, clear-

ing them also takes longer which also increases the risk of

latency spikes [31, 44]. Recent solutions have attacked sev-

eral of these challenges. However, we find that the issue of

increased memory pressure due to huge pages has received

less attention.

2.1.3 Tradeoff between Performance and Memory Ef-
ficiency. Huge pages can lead to increased memory pressure

(commonly known as bloat) in an application because they

allocate larger chunks of physical memory at once, typically

2MB or more, compared to the standard 4KB pages. When a

page fault occurs, the OS must allocate an entire page, even

if the application only needs a small portion of it. The un-

touched portions of a page represents wasted memory. Since

huge pages are larger, the memory waste can also be pro-

portionally higher especially for workloads with sparse or

unpredictable memory access patterns. As a result, applica-

tions may experience increased memory footprint, reduced

availability of free memory, and potential performance degra-

dation due to excessive memory consumption.

Therefore, huge pages lead to a complex tradeoff between

memory usage and performance: huge pages can improve per-
formance but at the potential expense of additional physical
memory usage. Figure 2 highlights this tradeoff with three

representative applications: BTree, Memcached and Rando-

mAccess. For these applications, huge pages improve perfor-

mance by as much 1.6× but at the cost of up to 4.3× higher

memory footprint. Ideally, the OS should be able to navigate

this tradeoff automatically (i.e., without user involvement)

and at runtime (i.e., depending on the availability of physical

memory). For example, if enough free memory is available,

the OS should allocate huge pages aggressively to maximize

performance. However, when memory is limited, it must

prioritize eliminating memory waste to avoid unintended

side-effects e.g., out-of-memory errors.

2.2 Bloat Management in Current Systems
Based on our study of prior work, we divide current systems

into three categories based on how they deal with the issue

of memory bloat due to huge pages:

2.2.1 Category-1 (No Control Over Bloat). These sys-
tems enable or disable the use of huge pages for the whole

system i.e., either all the applications are eligible to use huge

pages or none of them are (e.g., Linux THP) [6]. Intuitively,

these coarse-grained strategies fail to adapt to the properties

of individual applications and the availability of physical

memory at runtime. For example, if memory requirement of

two co-running applications exceed physical memory capac-

ity due to memory bloat, then the user is forced to disable

huge pages for both applications.

2.2.2 Category-2 (Coarse-Grained, Static). These sys-
tems employ more fine-grained strategies than Linux THP.

For example, FreeBSD and Ingens let a user configure a

threshold to limit the maximum amount of permissible mem-

ory bloat by letting them decide when a virtual memory

range can be backed by a huge page [26, 44]. For example,

suppose a user wants to limit memory bloat to a maximum

of 10%. In that case, she can configure the threshold such

that a 2MB virtual memory range will be allocated a 2MB

huge page only if at least 90% of the 512 base pages (4KB

each) within that range have been accessed at least once

by the application. While such a strategy is better than the

coarse-grained system-wide policies of Linux, it is still static

and suboptimal. More importantly, memory wasted due to

bloat is permanently wasted from a system point of view

i.e., the OS cannot reclaim the unused pages to satisfy other

allocations if it runs out of memory.

2.2.3 Category-3 (Fine-Grained, Dynamic). The third
category represents systems that deal with memory bloat dy-

namically e.g., HawkEye [31]. For example, HawkEye guar-

antees that if a page has been allocated by the system to an

application but the application has not accessed it, then it

is zero-filled. Based on this observation, physical memory

pages wasted due to memory bloat can be reclaimed at run-

time inHawkEye by de-bloating e.g., by breaking a huge page

mapping into smaller page mappings and de-duplicating the

constituent zero-filled base pages. For example, if a 2MB

huge page contains 100 zero-filled 4KB pages and 412 in-use

pages, then HawkEye maps the 100 pages into a single zero-

filled 4KB page while mapping the other pages as individual

4KB page mappings in the process page tables. The mecha-

nism of de-bloating is illustrated in Figure 3. The ability to
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Figure 3.An example of de-bloating, which reduces memory

bloat in the system by reclaiming unusedmemory (zero-filled

base pages) from a huge page.

de-bloat enables one to trade performance and memory effi-

ciency dynamically depending on the availability of physical

memory at runtime.

3 Motivation
We find that among all the existing systems, HawkEye is

the only one that provides support for dynamic memory de-

bloating. However, we find that in doing so, it uses policies

that can be inefficient or unfair. In this section, we elaborate

on these shortcomings of HawkEye.

3.1 Inefficient De-bloating (Intra-process Scenario)
HawkEye de-bloats huge pages by sequentially scanning

the address space of a process. In doing so, it examines the

contents of base (e.g., 4KB) pages within each huge (e.g.,

2MB) page. If a huge page contains one or more zero-filled

base pages, HawkEye de-bloats it as discussed in §2.2. It then

scans (and de-bloats, where applicable) the next set of huge

pages in the same sequential order.

This approach works well when memory bloat is uni-

formly distributed across different huge pages. However, we

find that memory bloat is concentrated in specific memory re-
gions for some applications. For example, Figure 4(a) shows

that Memcached has three kinds of huge pages: 1) nearly

100% memory bloat, 2) about 50% memory bloat and 3) no

memory bloat (towards the end of the address space). Sim-

ilarly, Btree also has three kinds of huge pages as shown

in Figure 4(b). This happens particularly when some regions

corresponding to different nodes in a tree are more populated

than the others (BTree), or when different keys are clustered

in specific patterns (Memcached).

The issue with the sequential scanning based method is

that it ignores the relative contribution of each huge page
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Figure 4. Distribution of bloat across the address space for

BTree, Memcached, RandomAccess-L, and RandomAccess-R.

Shaded regions represent the first half of the address space.

towards memory bloat. In general, it makes sense to first de-

bloat huge pages that constitute the maximum amount of

memory bloat. Doing so would enable memory savings while

breaking the minimum number of huge pages. However, due

to ignoring the relative contribution of different huge pages,

HawkEye may end up breaking huge pages with very little

bloat. If this happens, huge pages are broken unnecessarily

leading to a significant impact on performance.
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Table 1. Huge page broken and performance impact while

de-bloating two benchmarks that are identical except for

how memory bloat is distributed in their address space.

# Huge pages broken % slowdown

RandomAccess-L 611 < 2%

RandomAccess-R 2146 65%

Experimental Validation. To quantitatively demonstrate

this issue, we conducted a simple experiment with two vari-

ants of a simple micro-benchmark. The micro-benchmark

allocates a large buffer of 8GB and accesses it randomly,

leading to high TLB misses if only base pages are allocated.

Therefore, using huge pages improves performance. We con-

figure the access patterns of this benchmark such that there

is a fixed pre-determined amount of memory bloat in each

huge page. Using this property, we configure the first vari-

ant of the benchmark (called RandomAccess-L) such that

each huge page in the first half of its address space has 80%

memory bloat whereas huge pages in the second half of the

address space have only 20% memory bloat each. In the sec-

ond variant called RandomAccess-R, huge pages in the first

half have 20% bloat whereas those in the second half have

80% bloat each. The bloat distribution of these two variants

of the micro-benchmark is shown in Figure 4(c)-(d). With

these two variants, we expose the inefficiency of HawkEye

while reclaiming 2GB of unused physical memory from the

benchmark.

We argue that an ideal system should break minimum

number of huge pages to reclaim unused physical mem-

ory, irrespective of how memory bloat is distributed in

the address space. HawkEye fails to meet this property.

For RandomAccess-L wherein the first half of the address

space has more bloat, HawkEye breaks only 611 huge

pages to reclaim 2GB unused physical memory. However, in

RandomAccess-R wherein the first half of the address space

has far less bloat, HawkEye ends up breaking 2146 huge

pages to reclaim the same amount of memory. This is be-

cause in RandomAccess-R, when HawkEye scans its address

space sequentially, it keeps on breaking huge pages in the

first half of the address space even though de-bloating them

frees up small amount ofmemory each. The effect of breaking

huge pages can be seen in Table 1 wherein RandomAccess-R

suffers 65% slowdown compared to no de-bloating, whereas

RandomAccess-L observes a negligible impact on perfor-

mance. Therefore, it is clear that HawkEye’s performance is

highly dependent on how memory bloat is distributed in an

application.

3.2 Unfair De-bloating (Inter-process Scenario)
In cases where multiple applications are running concur-

rently, HawkEye de-bloats applications in the first-come-

first-serve (FCFS) order. Specifically, HawkEye first identifies

a process to be de-bloated, de-bloats it fully and then pro-

ceeds to the next process in the same FCFS order, if required.

This strategy is intuitively unfair because some processes

end up giving up most of their huge pages while some may

not be affected by de-bloating. Moreover, similar to the is-

sue discussed in §3.1, it ignores the relative contribution

of each process towards the total memory bloat present in

the system. Therefore, there is a need to incorporate both

fairness and efficiency challenges while de-bloating multiple

applications.

4 EMD: Design and Implementation
This section begins with a high-level description of our de-

sign goals and principles. We then present the design and

implementation of EMD.

4.1 Design Goals and Principles
Among all the existing OS-level solutions, HawkEye is the

only system that provides the ability to de-bloat physical

memory allocated to huge pages. However, as established in

§3, HawkEye’s de-bloating policy is suboptimal and unfair.

Our goal in EMD is to enable an OS to automatically find

a sweet spot in the trade-off space between memory bloat

and performance. Thus, at a high level, our design goals and

principles are as follows:

1. Minimal Performance Impact while De-bloating: De-
bloating should have minimal impact on application perfor-

mance. We achieve this goal through finer-grained tracking

of huge page regions and measuring bloat-density (i.e., the

number of zero-filled base pages within a huge page).

2. Fairness across Concurrent Processes: Fairness is

based on the principle that de-bloating should not unfairly

penalize one or more applications in the presence of multiple

concurrently running workloads. For example, if two pro-

cesses have identical bloat distributions, a fair de-bloating

policy ensures the ratio of huge pages broken is approxi-

mately equal for both processes. We achieve fairness with a

fine-grained prioritization scheme.

Overall, EMD prioritizes memory reclamation in the order

of memory bloat, i.e., huge pages with maximum bloat are

de-bloated first. The advantages of this are two-fold: 1) de-

bloating this way requires breaking the fewest huge pages

to reclaim a certain amount of unused memory, 2) note that

if a huge page contains mostly zero-filled unused pages, it

is also likely to be referenced less frequently compared to

more densely populated huge pages. This means that the

contribution of highly bloated pages will likely be low in

the overall TLB misses for a given application. Therefore,

reclaiming memory from the most bloated pages first also

minimizes the impact on runtime performance.
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Figure 5. A sample representation of bloat_map for three

processes A, B, and C.

4.2 Efficient Fine Grained De-bloating
To achieve our first goal of efficient de-bloating, EMD con-

siders the distribution of bloat before reclaiming unused

physical memory from an application. EMD is based on our

key insight that memory bloat is not uniformly distributed

across all regions, and that the trade-offs between memory

efficiency and performance vary across memory regions.

We first define an important metric that EMD uses for

efficient de-bloating: bloat-density. Given a huge page, its

bloat-density represents howmany of its base pages are zero-

filled. Therefore, a high value of bloat-density represents a

higher amount of memory bloat. EMD prioritizes reclaiming

bloat from huge pages with high bloat-density. This helps

in reclaiming the maximum amount of memory bloat while

breaking a minimum number of huge pages.

An ideal implementation of the above strategy would re-

quire sorting all huge pages based on their bloat-density. This

can be prohibitively expensive on large memory systems.

Instead, we propose a simpler method to achieve the benefit

of de-bloating with minimal processing overheads. We im-

plement a per-process data structure called the bloat_map1,
which is an array of 10 buckets: a bucket contains huge page

regions with similar bloat-density values. On x86 systems

with 2MB huge pages, the value of bloat-density is in the

range of 0-512. In our prototype, we maintain ten buckets in

the per-process bloat_map. Huge pages with bloat-density of

0-49 (i.e., those with less than 10% bloat) are placed in bucket

index 0, regions with bloat-density of 50-99 (10-20% bloat)

are placed in bucket index 1, and so on. EMD prioritizes de-

bloating regions from higher-index buckets first, gradually

de-bloating regions from higher indices to lower indices in

the bloat_map. Figure 5 illustrates an example bloat_map for

three processes: A, B, and C and Figure 6 shows how EMD

de-bloats a given process.

1
Inspired by the access_map data structure of HawkEye [31], popula-

tion_map of FreeBSD [27], and access_bitvector of Ingens [26].

1 function debloat_process(mm_struct, num_target_pages)
2 num_recovered_pages = 0
3 density_threshold = 450
4 // Loop until meeting target
5 while num_recovered_pages < num_target_pages do
6 for each vma in mm_struct do
7 for each huge_page in vma do
8 // compute bloat-density
9 bloat_density = COUNT_ZERO_PAGES(hp)
10 // skip or de-bloat?
11 if bloat_density < density_threshold then
12 continue
13 end if
14 // de-bloat the huge page
15 num_recovered_pages += RMV_ZERO_PG(hp)
16 if num_recovered_pages>=num_target_pages then
17 goto out
18 end if
19 end for
20 end for
21 // adjust threshold to de-bloat next bucket
22 density_threshold = density_threshold - 50
23 end while
24 out:
25 return num_recovered_pages
26 end function

Figure 6. EMD algorithm for de-bloating huge pages with a

given process’s address space.

4.3 Fairness across All Processes while De-bloating
We extend EMD’s fine-grained de-bloating to also align with

our notion of fairness. When multiple processes have non-

empty buckets at the highest non-empty index, EMD uses a

round-robin approach to ensure fairness among these pro-

cesses. Note that within a given process, de-bloating in the

order of higher index buckets to lower index buckets en-

sures efficiency (i.e., minimal performance impact). There-

fore, EMD provides both fairness and efficiency.

In the round-robin approach, we use quantum as a means

to control the number of huge pages de-bloated with a pro-

cess in a given iteration. EMD statically sets the quantum

to 100 huge page regions (configurable by the user). This

ensures that at most 100 huge pages are de-bloated from a

process at a given time, before considering other processes

for de-bloating. This strikes a balance between fairness and

the processing overhead.

To illustrate the fairness policy, consider three applica-

tions: A, B, and C. Their virtual address (VA) regions are

organized in the bloat-map as shown in Figure 5. EMD de-

bloats the regions in the following sequence:

A1, B1, C1, A2, B2, B3, C2, C3, A3, B4, A4.

Overall, EMD de-bloats memory regions starting from the

highest index (representing the highest bloat-density) in the

bloat map and works toward lower indices. Further, among

similar index in the bloat_map of different processes, it uses

round-robin scheduling to ensure fairness.
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Table 2. Specification of the benchmarks.

Name Mem footprint Description4KB 2MB

BTree 10GB 44GB

Random lookups in a B+

tree [43].

Memcached 19GB 50GB

In-memory key-value

caching store [18].

RandomAccess-L

(RA-L)

4GB 8GB

A custom micro-benchmark

with high memory bloat in

left half.

RandomAccess-R

(RA-R)

4GB 8GB

A custom micro-benchmark

with high memory bloat in

right half.

4.4 EMD Overhead
Note that applications allocate and de-allocate memory at

runtime. Hence, the state of free/used memory and the dis-

tribution of memory bloat can change significantly in short

periods of time. Therefore, EMD needs to scan a process

address space every time before de-bloating. However, the

overhead of scanning the address space is not very high

in most cases. This has already been established by Hawk-

Eye [31]
2
, which shows that only a small fraction of memory

needs to be examined to detect memory bloat in huge pages.

4.5 Implementation Notes
We implement EMD as a loadable kernel module designed

to optimize memory management on Linux systems. The

module includes functionalities to detect and manage zero-

filled base pages within huge pages. EMD allows for dynamic

loading and unloading, providing flexibility in deployment

and operational management without necessitating system

downtime. This capability facilitates real-time adaptation to

varying system conditions and operational requirements. To

trigger recovery from memory bloat, EMD uses two water-

marks on the amount of allocated memory in the system:

high and low. When the amount of memory in the system

exceeds high (80% in our prototype), EMD is activated, which

executes periodically until the memory falls below low (65%

in our prototype). More sophisticated policies can be used to

activate/deactivate de-bloating based on user requirements.

5 Evaluation
5.1 Experimental Setup and Workloads
Hardware Setup. Our experimental setup is based on an

AMD EPYC 7401 processor running at 2.0 GHz, featuring 24

cores (48 threads) per socket. The system is equipped with

a multi-level TLB hierarchy, including separate instruction

and data L1 TLBs (L1-iTLB and L1-dTLB). The L1-iTLB sup-

ports 4KB pages with 128 entries (8-way set associative) and

2
"HawkEye showed that scanning each in-use page requires ~10 bytes

on average, whereas bloat pages require scanning all 4096 bytes. Hence,

overheads are proportional to the number of bloat pages, not total allocated

memory.

2MB pages with 8 fully associative entries. Similarly, the

L1-dTLB accommodates 4KB pages (64 entries, 4-way set

associative), 2MB pages (32 entries, 4-way set associative),

and 1GB pages (4 fully associative entries). The L2 TLB pro-

vides broader coverage with 1536 entries for 4KB/2MB pages

(12-way set associative) and 16 entries for 1GB pages (4-way

set associative). The system also features a three-level cache

hierarchy, including 64KB L1 instruction cache, 32KB L1 data

cache, 512KB L2 cache, and an 8MB L3 cache. The platform

is configured with 256GB of main memory and runs Ubuntu

with Linux kernel version 4.3.

Workloads. We evaluate EMD with a mix of real-world

workloads and custom microbenchmarks. We evaluate the

improvements due to our fine-grained de-bloating strategy

based on bloat-density in both performance and fairness for

single, multiple homogeneous, and multiple heterogeneous

workloads. Table 2 provides the details of the workloads.

5.2 Evaluating Intra-process De-bloating
Goal.We first evaluate the effectiveness of our bloat-density-

based de-bloating strategy. Specifically, we measure the im-

pact of de-bloating on application runtime performance

when memory de-bloating is performed using HawkEye

versus EMD, comparing both methods against a huge page

only baseline (i.e., no de-bloating). This case serves as the

baseline for best-case runtime performance.

Methodology. To analyze the effects of de-bloating under
different scenarios, we reclaim different proportions of un-

used memory using de-bloating i.e., 20%, 30%, 40% and 50%.

For instance, if an application’s total memory bloat is 8GB

and we aim to de-bloat 20% of the physical memory, we ef-

fectively reclaim 1.6GB worth of zero-filled 4KB pages. In

general, a system that breaks the least number of huge page

mappings to reclaim a certain amount of memory is the most

efficient.

Results. Figure 7 illustrates the performance impact of

HawkEye and EMD across four workloads: BTree, Mem-

cached, RandomAccess-L (RA-L), and RandomAccess-R (RA-

R). HawkEye de-bloats memory sequentially in virtual ad-

dress space order (low to high) without considering that

bloat distribution is often non-uniform across the address

space. Therefore, all four workloads experience a signifi-

cant increase in runtime when de-bloating is performed us-

ing HawkEye. For example, RandomAccess-R has low bloat

in the left half and higher bloat in the right half. As a re-

sult, HawkEye breaks more huge pages during de-bloating,

leading to a runtime increase of more than 2× in the worst

case (at 50% de-bloating). The average runtime overhead for

RandomAccess-R with HawkEye is 1.84×. In contrast, EMD’s

fine-grained de-bloating strategy, which accounts for bloat

distribution, reduces this overhead to an average of 1.28×.
For Memcached and BTree, a similar trend is observed.

HawkEye results in an average runtime increase of 1.1×
for both workloads, whereas EMD incurs an overhead of
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Figure 7. Performance impact compared to no de-bloating in different scenarios (lower is better).
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Figure 8. Number of huge pages retained in different scenarios (higher is better).
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Figure 9. Performance impact on four instances of the same workload under different de-bloating scenarios (lower is better).

The vertical dashed line in each plot separates HawkEye (left) and EMD (right) results.
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Figure 10. Fairness scores for four homogeneous instances of each workload under different de-bloating scenarios (higher is

better).

less than 1.01×. HawkEye and EMD perform optimally for

RandomAccess-R since, in this case, the optimal de-bloating

order is naturally the sequential order that HawkEye uses.

Both HawkEye and EMD experience roughly similar per-

formance at 50% de-bloating. This is because under aggres-

sive de-bloating, most huge pages are broken (more than

75%), causing the application to rely predominantly on base
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pages. Consequently, application runtime approaches that of

a native execution without huge pages. Thus, at higher de-

bloating levels, both HawkEye and EMD converge to roughly

similar performance.

To explain EMD’s superior performance, Figure 8 presents

the number of huge pages retained by both systems at dif-

ferent de-bloating levels. Since HawkEye de-bloats memory

without considering non-uniform bloat distribution, it breaks

significantly more huge pages than EMD. For example, at

40% de-bloating, HawkEye retains only about 18% of the

huge pages initially allocated to RadomAccess-R whereas

EMD retains more than 50% of the huge pages. Similar trend

is also seen for other applications wherein EMD retains

20% more huge pages than HawkEye in many cases. For

RandomAccess-L, the number of huge pages retained by

both systems remains the same. These results show that

by breaking fewer huge pages and performing fine-grained

de-bloating, EMD significantly minimizes the impact of de-

bloating on application performance, compared to HawkEye.

5.3 Evaluating Inter-process De-bloating
5.3.1 Defining Fairness. We quantify fairness based on

the work by Craeynest et al. [17]. Concretely, let

𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑁 }
be the set of slowdowns experienced by each of the 𝑁 in-

stances under a given de-bloating policy, where

𝑆𝑖 =
𝑇 debloat

𝑖

𝑇 baseline

𝑖

Here,𝑇 baseline

𝑖 is the runtime of instance 𝑖 with no de-bloating

(ideal case), and 𝑇 debloat

𝑖 is its runtime under the de-bloating

scheme being evaluated. We then compute the mean slow-

down

𝜇𝑆 =
1

𝑁

𝑁∑︁
𝑖=1

𝑆𝑖

and the standard deviation

𝜎𝑆 =

√√√
1

𝑁

𝑁∑︁
𝑖=1

(𝑆𝑖 − 𝜇𝑆 )2

The coefficient of variation 𝐶𝑉 is defined as
𝜎𝑆
𝜇𝑆
. It measures

the variability in slowdowns relative to the average slow-

down across all instances. It captures how much individual

instances deviate from a fair baseline. Thus, 𝐶𝑉 serves as a

measure of unfairness. Consequently, we define fairness as

follows.

Fairness = 1 − 𝜎𝑆

𝜇𝑆

Since 𝐶𝑉 is always non-negative, the fairness score ranges

between 0 and 1. A value of 1 indicates perfectly equal slow-

downs across all instances (i.e., fully fair de-bloating), while

values approaching 0 indicate increasing levels of unfairness.

This statistically grounded metric offers several advantages

for our context. First, it is application-agnostic, relying only

on per-instance runtimes, which the OS can observe with-

out special instrumentation or hardware counters. Second,

by normalizing the variability with respect to the average

slowdown, this metric captures fairness independently of

the absolute performance drop. For instance, if all instances

slow down equally due to de-bloating, the system is still

considered fair—even if the slowdown is large—because no

instance is disproportionately affected. This normalization

ensures that fairness is judged based on how balanced the

impact is across instances, rather than the magnitude of

slowdown alone. Finally, using a single scalar in [0, 1] makes

it straightforward to compare the fairness of different de-

bloating policies.

We next experiment with multiple applications running

concurrently to study both fairness and performance, first

with identical instances of a single application, and then with

heterogeneous applications running simultaneously.

5.3.2 Homogeneous Workloads. To understand the ef-

fect of different de-bloating policies on identical instances,

we perform four experiments. In the first experiment, we

execute four identical instances of BTree, launching them

one after the other with a few seconds of delay in be-

tween. The other experiments replicate this with Mem-

cached, RandomAccess-L, and RandomAccess-R. To distin-

guish different instances of the sameworkload, we label them

based on the process creation order. For example, Instance-1

denotes the first instance while Instance-2, Instance-3, and

Instance-4 denote the second, third, and fourth instances,

respectively, of a particular workload. We investigate the

effect of de-bloating on the performance of each instance

while reclaiming 20% and 40% of the unused memory across

all instances.

Unfair de-bloating leads to unfair impact among concur-

rently running applications. To understand this more clearly,

Figure 9 shows the runtime of all the instances of BTree.

With HawkEye, at all de-bloating levels, all instances finish

at different times. For example, in de-bloating 40% of the

memory, the first instance has a 1.26× increase in runtime,

the second instance has a 1.25× increase in runtime but the

third and fourth instances are nearly unaffected. On the other

hand, with EMD, all instances finish at almost the same time,

ensuring fair runtime performance. This pattern is observed

for Memcached, RandomAccess-L, and RandomAccess-R as

well (see sub-figures (b), (c) and (d) of Figure 9).

This pattern is also evident when we compute the fair-

ness score which ranges from 0 (completely unfair) to 1

(perfectly fair). Figure 10 shows that EMD consistently out-

performs HawkEye. Under both 20% and 40% de-bloating,

EMD achieves a perfect score of 1.0 for BTree and Mem-

cached, indicating fair de-bloating across all instances.

For the microbenchmarks, HawkEye attains only average
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Figure 11. Number of huge pages retained on four instances of the same workload under different de-bloating scenarios

(higher is better). The vertical dashed line in each plot separates HawkEye (left) and EMD (right) results.
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Figure 12. Runtime compared to no de-bloating scenario

with one instance of BTree and one instance of Memcached

running simultaneously (lower is better).

fairness scores of 0.65 for RandomAccess-L and 0.72 for

RandomAccess-R, while EMD maintains a high score of 0.95

for both microbenchmarks.

HawkEye is unfair because it breaks huge pages one in-

stance at a time based on the process arrival order i.e., it

starts de-bloating memory from the first instance and moves

on to the next instance only after first instance. In contrast,

EMD ensures fairness by judiciously breaking huge pages

across all instances. It identifies the most bloated regions

across all instances and de-bloats them. This is evident from

Figure 11 which show the number of huge pages retained by

HawkEye and EMD for BTree, Memcached, RandomAccess-

L, and RandomAccess-R, respectively. For example, when de-

bloating 40% of memory from BTree, HawkEye retains only

about 14% of the huge pages from Instance-1 and Instance-2

whereas Instance-3 and Instance-4 get to retain almost all of

their huge pages. In contrast, with EMD, all instances retain

nearly 56% of their huge pages. Similar patterns are observed

for Memcached, RandomAccess-L, and RandomAccess-R.

These results confirm that EMD is fair in the presence of

multiple concurrently running applications.

5.3.3 Heterogeneous Workloads. To evaluate the effi-

cacy of different de-bloating strategies for heterogeneous

instances, we grouped workloads into sets, each contain-

ing one instance of BTree and one instance of Memcached.

The BTree instance was launched a few seconds before the
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Figure 13. Fairness scores for heterogeneous instances com-

prising one BTree and one Memcached instance running

simultaneously under different de-bloating scenarios (higher

is better).
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Figure 14.Number of huge pages retained with one instance

of BTree and one instance of Memcached running simulta-

neously (higher is better).

Memcached instance to capture the effect of process cre-

ation order. We assessed the impact of various de-bloating

strategies while reclaiming 20%, 30%, 40% and 50% of the

unused memory of both applications. We normalize the run-

time of each application against that of huge pages without

de-bloating.

Figure 12 illustrates the runtime of both BTree and Mem-

cached under all de-bloating scenarios. With HawkEye,

BTree instances experiences a 1.28× increase in runtime
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Table 3. Comparison against 4KB pages

Benchmark Linux-4KB EMD
High Bloat Low Bloat

BTree 1733 1070 1301

Memcached 1633 991 1192

RandomAccess-L 480 234 434

RandomAccess-R 482 231 431

in the worst case (1.22× on average), whereas the perfor-

mance of Memcached is nearly unaffected. In contrast, with

EMD, both applications complete their execution at nearly

the same time with minimal impact on performance com-

pared to the best case.

We now evaluate the fairness score between heteroge-

neous instances. As shown in Figure 13, EMD achieves a near-

perfect fairness score of 1.0 (as one score is 0.99), across all

de-bloating levels, demonstrating fully balanced de-bloating

between the BTree and Memcached instances. In contrast,

HawkEye averages a fairness score of 0.91, reflecting its ten-

dency to complete de-bloating for the BTree instance before

proceeding toMemcached. This imbalance reinforces the per-

formance disparities observed earlier and foreshadows the

uneven number of huge pages reclaimed from each instance.

Figure 14 shows the number of huge pages retained by

HawkEye and EMD for the same experiment. As the figure

shows, EMD ensures a fair reclamation of huge pages among

BTree and Memcached, whereas HawkEye prioritizes de-

bloating BTree before moving on to Memcached (note that

this is because we launch BTree before Memcached in our

experiments). For instance, when de-bloating 40% of the

unused memory, HawkEye retains only about 14% of the

huge pages of BTree whereas Memcached retains almost all

of its huge pages. In contrast, EMD retains huge pages nearly

fairly i.e., 54% in BTree and 64% in Memcached, ensuring

a more balanced de-bloating approach. This fairness in de-

bloating translates into fair runtime performance.

6 Discussion
Performance Comparison against Base Pages: EMD

navigates the memory-performance trade-off fairly and ef-

ficiently. Table 3 shows that EMD consistently matches or

outperforms Linux configured with 4KB base pages across

all evaluated workloads. The runtimes, measured in sec-

onds, clearly demonstrate the inefficiency of using only base

pages—4KB runtimes are significantly higher for all bench-

marks. By leveraging huge pages and selectively de-bloating

only the zero-filled base pages, EMD preserves low address

translation overhead while reducing unnecessary memory

usage.

Performance Evaluation when There Is No Bloat: Not
all workloads exhibit the memory bloat that EMD is de-

signed to reclaim. Figure 15 presents several benchmarks

that show zero bloat when running with Linux-THP, yet
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Figure 15. Normalized runtime of applications that are not

subject to memory bloat.

Table 4. Memory footprint of BTree and Memcached in

Linux kernel version 6.7.2.

Memory (4KB) Memory (2MB)

BTree 10GB 44GB

Memcached 19GB 50GB

still achieve substantial performance benefits from Linux-

THP [1, 9, 13, 14]. To test whether EMD inadvertently intro-

duces overhead in such "bloat-free" scenarios, we explicitly

invoked EMD’s de-bloating mechanism on these workloads.

As shown in Figure 15, the performance impact is negligi-

ble—the average overhead across these benchmarks is 1%,

indicating that EMD is effectively non-intrusive when no

bloat is present.

Memory Bloat in Recent Linux Kernels: Although Linux

has significantly improved THP support, particularly in

addressing latency, external fragmentation, NUMA, and

swapping-related issues, memory bloat remains a persistent

challenge. To validate this, we measured the memory foot-

print of Memcached and BTree on Linux 6.7.2 (see Table 4).

These results clearly show that memory bloat continues to

exist. Since our solution is not tied to any specific kernel

version, we expect our findings to generalize well across

newer Linux versions.

Support for 1GB Pages: EMD is designed around the key

insight that memory bloat can be mitigated dynamically by

identifying and reclaiming unused, zero-filled base pages

within huge pages. This de-bloating mechanism is indepen-

dent of the specific huge page size, making EMD conceptually

applicable not only to 2MB pages but also to larger page sizes

such as 1GB. However, we do not include a quantitative eval-

uation using 1GB pages because neither the Linux kernel

nor HawkEye currently support 1GB pages under THP.

Other Policies for Fair De-bloating: While our bloat-

map–based policy prioritizes de-bloating based on the rel-

ative amount of zero-filled pages per process, one could
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also achieve fairness using other policies e.g., based on

application-level performance metrics or TLB hit (or miss)

ratio. However, application-metric based or hardware-

counters–based fairness brings practical challenges. The OS

kernel lacks fine-grained insight into application internal

performance metrics, making it difficult to translate raw

throughput or latency into de-bloating decisions. Likewise,

relying on TLB hit statistics assumes easy access to per-

formance counters—a luxury absent in many virtualized

or secure environments. In contrast, our bloat-map heuris-

tic depends only on readily available page-table metadata

(zero-page counts), enabling a light-weight, portable, and

low-overhead fairness mechanism that works uniformly on

all environments.

7 Related Work
Hardware Approaches: Several techniques aim to reduce

TLB misses and improve address translation. Direct Seg-

ments [11], later extended to virtualized [19] and hetero-

geneous systems [22] map large virtual regions to contigu-

ous physical memory. Other methods like SpecTLB [23],

GLUE [36], and CoLT [35] use speculation or coalescing

to increase TLB reach. Mosaic Pages [21] and Perforated

Pages [34] enhance TLB efficiency using compressed or

sparse mappings. DyLeCT [33] dynamically adapts page

length for compressed memory. While effective, these solu-

tions require hardware changes. In contrast, EMD is a pure

software approach and can be readily adopted in existing

systems.

Software Approaches: OS-level techniques improve huge

page usage without hardware support. Navarro et al. [28]

proposed contiguity-aware allocation, influencing the work

on FreeBSD [27]. Ingens [26] adds dynamic promotion based

on access patterns but lacks de-bloating. HawkEye [31], most

similar to EMD, uses fine-grained tracking but performs

sequential de-bloating without fairness. Quicksilver [44] and

Trident [38] enhance huge page lifecycle and extend support

to 1GB pages. EMD complements these efforts by introducing

fair and efficient runtime de-bloating with no hardware or

application changes.

8 Conclusion
Huge pages promise to boost the performance of memory-

hungry applications, albeit at the expense of consuming

extra physical memory known as bloat. In this paper, we

show that current OS-level solutions either lack support

for dynamically mitigating memory bloat or suffer from

avoidable performance and fairness issues. We address these

shortcomings with EMD (Efficient Memory De-bloating), an

OS-level solution that employs a prioritization scheme to

reclaim unused memory fairly and efficiently at runtime.

EMD offers a promising solution to improve the efficiency

and fairness of large page management in operating systems.
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