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Executive summary

▪ Memory de-duplication (KSM in Linux) is NUMA-unaware
• Uncontrolled performance variability

• Subversion of process priority

▪ Our proposal: NUMA-aware KSM (nuKSM) in Linux
• Judicious placement of de-duplicated pages to limit NUMA overheads

• Priority-aware placement of de-duplicated pages

▪ Beyond NUMA: De-centralize KSM’s data structures for scalability 
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De-duplication reduces memory consumption

▪ Identical content across multiple processes/VMs → Opportunity for 
memory consolidation
• Similar applications, OS images, libraries, etc.
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De-duplication reduces memory consumption
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De-duplication reduces memory consumption

MySQL-0 MySQL-1

DRAM DRAM

copy-on-write mappings

▪ Scan pages in physical memory

▪ Remove duplicate content using copy-on-write
• Examples: Kernel same page merging  (KSM) in Linux, VMware’s                                                                 

Transparent Page Sharing (TPS)
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Observation 1: De-duplication introduces perf. variations 
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20-46% performance variation across instances of the same application!
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NUMA-ness in multi-socket servers

▪ Non-uniform memory access (NUMA) systems
• Important for scaling memory capacity and bandwidth

• Performance determined by access latency
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Insight: De-duplication collides with NUMA

▪ Unbalanced local/remote memory access ratio across instances
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Insight: De-duplication collides with NUMA

▪ Could have placed de-duplicated pages on Instance “1”’s local memory

▪ How does KSM decide where to place a merged page?
• Rather arbitrary: Which ever process’s pages are scanned later

• The order of scanning dictates page placement !

MySQL-0 MySQL-1

DRAM DRAM
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Observation 2: Subversion of priority goals

▪ High priority process may suffer high remote memory accesses

▪ No way to tune the system
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Enhance Linux’s KSM (de-duplication) to contain 
performance variations and avoid priority subversion

Objective:

nuKSM: NUMA-aware Memory De-duplication
on Multi-socket Servers

Proposal:

Code: https://github.com/csl-iisc/nuKSM-pact21-artifact 
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https://github.com/csl-iisc/nuKSM-pact21-artifact


nuKSM: Judicious placement of de-duplicated pages

▪ Idea: Place de-duplicated page on the node that accesses it more 
frequently

• Minimizes aggregate impact of remote accesses
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nuKSM: Judicious placement of de-duplicated pages
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▪ Idea: Place de-duplicated page on the node that accesses it more frequently
• Minimizes aggregate impact of remote accesses

frequently accessed pages



nuKSM: Judicious placement of de-duplicated pages
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▪ Idea: Place de-duplicated page on the node that accesses it more frequently
• Minimizes aggregate impact of remote accesses

frequently accessed pages



nuKSM: Judicious placement of de-duplicated pages

MySQL-0 MySQL-1

DRAM DRAM

▪ Challenge: How to identify who accesses a page more frequently?
• Repurpose Linux’s active and inactive lists (originally for swapping)
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▪ Idea: Place de-duplicated page on the node that accesses it more frequently
• Minimizes aggregate impact of remote accesses



nuKSM: Judicious placement of de-duplicated pages
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Evaluation Methodology

Hardware Platform

Model 2-socket Intel Skylake

CPU cores 18 cores per socket @ 2.30GHz

Cache 25MiB shared L3 cache

Memory DDR4-2666, 192GiB per socket

Workloads

XSBench 11 GiB

MySQL 20 GiB

BTree 5.6 GiB

RandomAccess 2.8 GiB

CG 3.5 GiB
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nuKSM avoids performance variations
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nuKSM avoids performance variations
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nuKSM avoids performance variations

Benchmark Fairness *

KSM nuKSM

XSBench 0.84 0.98

Btree 0.85 0.98

MySQL 0.85 0.99

CG 0.77 0.99

Random-Access 0.70 0.94

∗ 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 𝐼0, 𝐼1 =
min(𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 0 , 𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛(𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 1))

max(𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 0 , 𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛(𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 1))

20



nuKSM: Priority based memory de-duplication

▪ Distribute NUMA overhead in proportion to priority ratios

▪ Derive priority from Linux’s nice values
• -20 (highest priority) <= nice <= 19 (lowest priority)
• snice (scaled nice) = nice + 21

▪ 𝑛𝑢𝑠ℎ𝑎𝑟𝑒(𝑝) = 1 −
𝑠𝑛𝑖𝑐𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

σ
𝑡𝑎𝑠𝑘𝑠 𝑢𝑠𝑖𝑛𝑔 𝑝 𝑠𝑛𝑖𝑐𝑒 𝑡𝑎𝑠𝑘
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Priority based memory de-duplication

XSBench MySQL
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Priority of Instance-0 decreases
Priority of Instance-1 increases

Priority of Instance-0 decreases
Priority of Instance-1 increases



Beyond NUMA: Scaling KSM to larger memory sizes
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Beyond NUMA: Scaling KSM to larger memory sizes
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Beyond NUMA: Scaling KSM to larger memory sizes
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Centralized data structures



Beyond NUMA: Scaling KSM to larger memory sizes
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Beyond NUMA: Scaling KSM to larger memory sizes
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Beyond NUMA: Scaling KSM to larger memory sizes
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nuKSM scales better with memory size
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Take-aways: NUMA-aware KSM (nuKSM)

▪ Observation: KSM is NUMA unaware.
• Arbitrary (uncontrolled) performance variability

• Subversion of priority goals

• Low responsiveness with large memory

▪ Our proposal: nuKSM: NUMA-aware KSM
• Deterministic performance and fairness 

• Inline with priority objective

• Enhanced responsiveness
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Code: https://github.com/csl-iisc/nuKSM-pact21-artifact 

https://github.com/csl-iisc/nuKSM-pact21-artifact


Questions

31

Code: https://github.com/csl-iisc/nuKSM-pact21-artifact 

https://github.com/csl-iisc/nuKSM-pact21-artifact

