
nuKSM: NUMA-aware Memory De-duplication

on Multi-socket Servers

Akash Panda, Ashish Panwar, Arkaprava Basu

Department of Computer Science and Automation
Indian Institute of Science

https://csl.csa.iisc.ac.in

Executive summary

▪ Memory de-duplication (KSM in Linux) is NUMA-unaware
• Uncontrolled performance variability

• Subversion of process priority

▪ Our proposal: NUMA-aware KSM (nuKSM) in Linux
• Judicious placement of de-duplicated pages to limit NUMA overheads

• Priority-aware placement of de-duplicated pages

▪ Beyond NUMA: De-centralize KSM’s data structures for scalability

2

De-duplication reduces memory consumption

▪ Identical content across multiple processes/VMs → Opportunity for
memory consolidation
• Similar applications, OS images, libraries, etc.

MySQL-0 MySQL-1

DRAM DRAM

3

De-duplication reduces memory consumption

MySQL-0 MySQL-1

DRAM DRAM

4

De-duplication reduces memory consumption

MySQL-0 MySQL-1

DRAM DRAM

copy-on-write mappings

▪ Scan pages in physical memory

▪ Remove duplicate content using copy-on-write
• Examples: Kernel same page merging (KSM) in Linux, VMware’s

Transparent Page Sharing (TPS)

5

Observation 1: De-duplication introduces perf. variations

0.5

0.75

1

1.25

1.5

XSBench BTree MySQL CG Random
Access

XSBench BTree MySQL CG Random
Access

KSM OFF KSM ON

N
o

rm
al

iz
e

d
 r

u
n

ti
m

e Instance 0 Instance 1

20-46% performance variation across instances of the same application!

6

NUMA-ness in multi-socket servers

▪ Non-uniform memory access (NUMA) systems
• Important for scaling memory capacity and bandwidth

• Performance determined by access latency

DRAM

Xeon
Gold
6140

Xeon
Gold
6140

DRAM

Xeon
Gold
6140

Xeon
Gold
6140

Xeon
Gold
6140

Xeon
Gold
6140

Xeon
Gold
6140

Xeon
Gold
6140

DRAM DRAM

89ns
110GiBps

139ns
51GiBps

7

Insight: De-duplication collides with NUMA

▪ Unbalanced local/remote memory access ratio across instances

0%

20%

40%

60%

80%

100%

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

XSBench BTree MySQL CG Random
Access

XSBench BTree MySQL CG Random
Access

KSM OFF KSM ON

Lo
ca

l/
re

m
o

te
 a

cc
e

ss
 r

at
io Local Remote

KSM OFF KSM ON

8

Insight: De-duplication collides with NUMA

▪ Could have placed de-duplicated pages on Instance “1”’s local memory

▪ How does KSM decide where to place a merged page?
• Rather arbitrary: Which ever process’s pages are scanned later

• The order of scanning dictates page placement !

MySQL-0 MySQL-1

DRAM DRAM

9

Observation 2: Subversion of priority goals

▪ High priority process may suffer high remote memory accesses

▪ No way to tune the system

0

2

4

6

8

10

12

14

16

18

45 495 945 1395 1845 2295 2745 3195 3645 4095

Th
ro

u
gh

p
u

t
(i

n
 m

ill
io

n
)

Time (seconds)

Low Priority Instance

High Priority Instance

De-duplication
completed

10

Enhance Linux’s KSM (de-duplication) to contain
performance variations and avoid priority subversion

Objective:

nuKSM: NUMA-aware Memory De-duplication
on Multi-socket Servers

Proposal:

Code: https://github.com/csl-iisc/nuKSM-pact21-artifact

11

https://github.com/csl-iisc/nuKSM-pact21-artifact

nuKSM: Judicious placement of de-duplicated pages

▪ Idea: Place de-duplicated page on the node that accesses it more
frequently

• Minimizes aggregate impact of remote accesses

MySQL-0 MySQL-1

DRAM DRAM

12

nuKSM: Judicious placement of de-duplicated pages

MySQL-0 MySQL-1

DRAM DRAM

13

▪ Idea: Place de-duplicated page on the node that accesses it more frequently
• Minimizes aggregate impact of remote accesses

frequently accessed pages

nuKSM: Judicious placement of de-duplicated pages

MySQL-0 MySQL-1

DRAM DRAM

14

▪ Idea: Place de-duplicated page on the node that accesses it more frequently
• Minimizes aggregate impact of remote accesses

frequently accessed pages

nuKSM: Judicious placement of de-duplicated pages

MySQL-0 MySQL-1

DRAM DRAM

▪ Challenge: How to identify who accesses a page more frequently?
• Repurpose Linux’s active and inactive lists (originally for swapping)

15

▪ Idea: Place de-duplicated page on the node that accesses it more frequently
• Minimizes aggregate impact of remote accesses

nuKSM: Judicious placement of de-duplicated pages

16

MySQL-0 MySQL-1

C0 C1 C2 C3 C0 C1 C2 C3

Node-0 Node-1

Local Memory Access Remote Memory Access

Evaluation Methodology

Hardware Platform

Model 2-socket Intel Skylake

CPU cores 18 cores per socket @ 2.30GHz

Cache 25MiB shared L3 cache

Memory DDR4-2666, 192GiB per socket

Workloads

XSBench 11 GiB

MySQL 20 GiB

BTree 5.6 GiB

RandomAccess 2.8 GiB

CG 3.5 GiB

17

nuKSM avoids performance variations

18

nuKSM avoids performance variations

19

nuKSM avoids performance variations

Benchmark Fairness *

KSM nuKSM

XSBench 0.84 0.98

Btree 0.85 0.98

MySQL 0.85 0.99

CG 0.77 0.99

Random-Access 0.70 0.94

∗ 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 𝐼0, 𝐼1 =
min(𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 0 , 𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛(𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 1))

max(𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 0 , 𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛(𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 1))

20

nuKSM: Priority based memory de-duplication

▪ Distribute NUMA overhead in proportion to priority ratios

▪ Derive priority from Linux’s nice values
• -20 (highest priority) <= nice <= 19 (lowest priority)
• snice (scaled nice) = nice + 21

▪ 𝑛𝑢𝑠ℎ𝑎𝑟𝑒(𝑝) = 1 −
𝑠𝑛𝑖𝑐𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

σ
𝑡𝑎𝑠𝑘𝑠 𝑢𝑠𝑖𝑛𝑔 𝑝 𝑠𝑛𝑖𝑐𝑒 𝑡𝑎𝑠𝑘

21

Priority based memory de-duplication

XSBench MySQL

22

Priority of Instance-0 decreases
Priority of Instance-1 increases

Priority of Instance-0 decreases
Priority of Instance-1 increases

Beyond NUMA: Scaling KSM to larger memory sizes

Stable Tree Unstable Tree

PagePage Page Page Page

23

Beyond NUMA: Scaling KSM to larger memory sizes

Stable Tree Unstable Tree

PagePage Page Page Page

24

=

=

=

=

=

=

Beyond NUMA: Scaling KSM to larger memory sizes

Stable Tree Unstable Tree

PagePage Page Page Page

25

=

=

=

=

=

=

=

=

=

=

Centralized data structures

Beyond NUMA: Scaling KSM to larger memory sizes

Stable Forest Unstable Forest

Page

Checksum

Page Page Page Page

26

Beyond NUMA: Scaling KSM to larger memory sizes

Stable Forest Unstable Forest

Page

Checksum

Page Page Page Page

27

Beyond NUMA: Scaling KSM to larger memory sizes

Stable Forest Unstable Forest

Page

Checksum

Page Page Page Page

28

nuKSM scales better with memory size

29

Take-aways: NUMA-aware KSM (nuKSM)

▪ Observation: KSM is NUMA unaware.
• Arbitrary (uncontrolled) performance variability

• Subversion of priority goals

• Low responsiveness with large memory

▪ Our proposal: nuKSM: NUMA-aware KSM
• Deterministic performance and fairness

• Inline with priority objective

• Enhanced responsiveness

30

Code: https://github.com/csl-iisc/nuKSM-pact21-artifact

https://github.com/csl-iisc/nuKSM-pact21-artifact

Questions

31

Code: https://github.com/csl-iisc/nuKSM-pact21-artifact

https://github.com/csl-iisc/nuKSM-pact21-artifact

