
nuKSM: NUMA-aware Memory De-duplication on Multi-socket Servers

Akash Panda*, Ashish Panwar, Arkaprava Basu

Department of Computer Science and Automation
Indian Institute of Science

{akashpanda, ashishpanwar, arkapravab}@iisc.ac.in

Abstract—An operating system has many memory manage-
ment goals including reducing memory access latency, and
reducing memory footprint. These goals can conflict with each
other when independent subsystems optimize them in silos.

In this work, we report one such conflict that appears
between memory de-duplication and NUMA (non-uniform
memory access) management. Linux’s memory de-duplication
subsystem, namely KSM, is NUMA unaware. Consequently,
while de-duplicating pages across NUMA nodes, it can place
de-duplicated pages in a manner that can lead to significant
performance variations, unfairness, and subvert process pri-
ority. Toward this, we introduce NUMA-aware KSM, a.k.a.,
nuKSM, that makes judicious decisions about the placement of
de-duplicated pages to reduce the impact of NUMA, unfairness,
and avoid priority subversion. Independent of the NUMA
effects, we observed that KSM scales poorly to systems with
larger memory sizes due to its centralized design. Thus, we
extended nuKSM to adopt a de-centralized design.

I. INTRODUCTION

Memory management is a crucial piece in the design of
a computing system. It has several responsibilities ranging
from ensuring quick access to data to enabling memory
consolidation. For example, the placement of pages in
multi-socket NUMA (non-uniform memory access) servers
impacts memory access latency that an application experi-
ences [1]–[4]. Similarly, memory de-duplication plays a role
in memory consolidation and over-commitment [5]–[9].

Different memory management goals are known to con-
flict with each other [10]–[12]. This happens when inde-
pendent subsystems are responsible for different goals and
each works in its own silo [12]. In this work, we describe a
previously unreported conflict – how Linux’s de-duplication
efforts may conflict with its NUMA management.

De-duplication plays an important role in memory con-
solidation and over-commitment, particularly under virtu-
alization [7], [9], [13]. It is not uncommon for different
virtual machines (VMs) to run the same or similar OSes,
libraries, and applications [14]. Several services are often
replicated for better load balancing and fault tolerance [7].
Consequently, many physical pages belonging to different

* Author is currently affiliated with AMD. This work was performed
when the author was a student at Indian Institute of Science.

VMs can have the same content. When such VM in-
stances run on the same machine, it provides opportunities
to consolidate the memory usage through de-duplication.
Linux’s Kernel Same page Merging (KSM [15]), VMware’s
Transparent Page Sharing (TPS [8]) are real-world examples
of subsystems responsible for de-duplication.

Linux’s KSM periodically scans the contents of pages
mapped to different process’s virtual address spaces1, includ-
ing those mapped by virtual machine’s (here, KVM) guest
physical address space. When it finds two pages with same
contents, it de-duplicates them. One of the copies is retained
while the other is freed. Mappings to the retained copy (de-
duplicated page) from the sharing processes are rendered
copy-on-write. If a process later attempts to write to a de-
duplicated page, KSM first creates a new copy of that page.

To enable greater de-duplication opportunities, KSM
enables de-duplication of pages across different sockets
(NUMA nodes) in multi-socket servers. In such servers,
memory access latencies can be non-uniform. The portion
of the physical memory that reside on the same socket
as the processor accessing the memory is local to that
processor. The memory on other sockets are remote to a
given processor. Remote memory accesses are typically 1.5–
2× slower than the local accesses [3], [4]. Thus, most of the
memory accesses should be local for good performance.

De-duplication across NUMA nodes can induce remote
memory accesses in one or more of the VMs whose pages
are de-duplicated. When pages on different NUMA nodes
with identical contents are de-duplicated, KSM retains one
of the copies on one of the nodes. Consequently, subsequent
accesses to the de-duplicated copy of the page from a VM
running on a different node become remote.

Unfortunately, we discovered that KSM is unaware of
the NUMA implications of multi-socket servers. While
remote accesses are not completely avoidable for pages
de-duplicated across nodes, NUMA-unawareness leads to
unintended and uncontrolled performance variations, as well
as unfairness in execution. We demonstrate that a VM could
experience significantly more remote accesses (e.g., more

1We use VMs and processes interchangeably since in the Linux/KVM
ecosystem, VMs are KVM processes to Linux (hypervisor).

258

2021 30th International Conference on Parallel Architectures and Compilation Techniques (PACT)

978-1-6654-4278-7/21/$31.00 ©2021 IEEE
DOI 10.1109/PACT52795.2021.00026

20
21

 3
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ar

al
le

l A
rc

hi
te

ct
ur

es
 a

nd
 C

om
pi

la
tio

n
Te

ch
ni

qu
es

 (P
AC

T)
 |

 9
78

-1
-6

65
4-

42
78

-7
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
PA

CT
52

79
5.

20
21

.0
00

26

than 90%) than another, even when both execute instances
of the same application. Consequently, the performance of
two identical virtual machines can differ by as much as 46%.

After de-duplication of pages across nodes, a VM’s per-
formance hinges on whether its copy was retained or was
freed. KSM scans virtual address spaces of one process
(VM) at a time to identify candidates for de-duplication
(i.e., mergeable). However, when it finds mergeable pages,
the NUMA-ness is not considered in deciding which copy
to retain. The relative order in which KSM happens to scan
address spaces of the processes/VMs determines which node
will host the de-duplicated pages. The order of scan itself is
dependent on the relative order in which the processes/VMs
were created and, thus, is arbitrary.

KSM is also oblivious to process priorities. When coupled
with NUMA-unawareness, this can lead to priority sub-
version where a higher priority process slows down more
than a lower priority one due to NUMA effects. Users
have no control over which processes or virtual machines
should enjoy more local accesses to de-duplicated pages.
As a consequence, there is no way in Linux to control the
performance implications of NUMA while using system-
wide de-duplication for better memory consolidation and
over-commitment.

To address these, we introduce nuKSM– NUMA-aware
KSM. The foremost objective of nuKSM is to make an
informed choice about which of copy of the pages with
duplicate contents to retain and which one to free. We strive
to reduce the total number of remote accesses by keeping a
de-duplicated page close to the VM that is accessing it more
frequently. The frequency of accesses to the remote memory
decides the NUMA overheads. To determine which copy is
more frequently accessed, nuKSM leverages information on
page access frequency already available in Linux for page
reclamation (e.g., active and inactive lists).

It is however possible, that both VMs frequently access
their copies of the page being de-duplicated. There, nuKSM
strives to spread the NUMA overheads equitably among the
VMs by distributing de-duplicated pages across nodes in
a round-robin fashion. This improves fairness and avoids
performance variations. We empirically find that nuKSM
reduces performance variations in certain workloads from
46% to a mere 4%.

To avoid priority subversion, nuKSM enables the user to
request enforcement of process priorities in the distribution
of NUMA overheads due to de-duplication. When requested,
nuKSM ensures that the location of de-duplicated pages
reflects the relative priorities of VMs whose pages are being
de-duplicated. Therefore, a VM with high priority will find
most of its de-duplicated pages on its local node.

Beyond NUMA unawareness, we notice that KSM scales
poorly with the size of the memory. We find that KSM
uses centralized data structures, like a single red-black
tree to track all de-duplicated pages and one more for

all de-duplication candidate pages. The latency to access
and update these structures increases with memory size.
Therefore, the responsiveness of KSM (time taken to remove
duplicates) degrades on systems with large memory sizes.

Instead of two centralized trees, nuKSM keeps two
forests. A system’s memory capacity determines the number
of trees in the forests. For functional correctness, it is
imperative for all duplicate copies be assigned to the same
tree. Therefore, nuKSM decides the tree that will track a
page based on the checksum of its contents. Pages with the
same content are bound to have the same checksum. Thus,
nuKSM does not miss out on de-duplication opportunities.

In summary, we make the following contributions.
• We discover that NUMA-unawareness in Linux’s KSM
can lead to unfairness, performance variability, and priority
subversions among the concurrently running VMs.
• We created nuKSM, NUMA-aware memory de-
duplication in Linux that makes judicious decision on the
placement of the de-duplicated pages to reduce NUMA
overheads, ensure fairness or to avoid priority subversion.
• We further observed that KSM scale poorly with increas-
ing memory sizes. We address this by de-centralizing the
process of finding de-duplication candidates in nuKSM.

II. BACKGROUND

A. Memory de-duplication in Linux

It is not uncommon for pages to have duplicate contents,
especially when multiple VMs are hosted on a single server.
VMs may be running the same OSes and a similar set of
applications. The goal of de-duplication is to identify pages
with identical contents and de-duplicate them to reduce the
overall memory usage. While many OSes and hypervisors
support de-duplication [8], [15], [16], we focus on KSM
in the Linux and KVM ecosystem. A process needs to
register its virtual memory regions with KSM using the
madvise system call with the MADV MERGEABLE flag for
it to be considered for de-duplication [15]. KVM, however,
automatically registers the entire memory of VMs to KSM.

Figure 1 shows an overview of the data structures used in
KSM. The algorithm to detect pages with duplicate content
is an important but resource-consuming building block of
memory de-duplication. KSM maintains two red-black trees
for the purpose, namely stable and unstable. The tree nodes
are arranged based on page contents. Already de-duplicated
pages are placed in the stable tree, while all potential
candidates are placed in the unstable tree. A page whose
content has not been updated between the two most recent
scans is considered a de-duplication candidate. Frequently
updated pages are unlikely to be de-duplicated with others,
and thus, ignored by KSM. Further, the cost of identifying
and de-duplicating a page is amortized only if it stays de-
duplicated for a long duration. A write to a de-duplicated
page incurs a page (COW) fault and copying of the contents.

259

VMA

P0 P1 Pn

mm_structmm
descriptors

virtual memory areas

physical pages

P0

P1 P2

P3 P4 P5 P6

P10

P11 P12

P13 P14 P15 P16

unstable tree stable tree

mm_structmm_struct

VMAVMA

Figure 1: Key data structures in KSM. A mm struct repre-
sents a virtual address space. KSM chooses address spaces
to scan from the list of registered mm structs. A VMA
represents a contiguous address region. KSM uses unstable
and stable trees for identifying de-duplication candidates.

KSM employs a kernel thread for 1© finding de-
duplication opportunities and 2© for performing the de-
duplication. Processes, including VMs, that are registered
with KSM are kept in a list (top of Figure 1). The kernel
thread periodically scans processes from the list, one at
a time. During a scan, KSM sequentially runs through
the physical pages mapped to process’s virtual memory
regions (struct vm area struct) to identify de-duplication
candidates. KSM’s scan rate is parameterized in Linux.

For each page, KSM performs a search in the stable tree
to find if it is identical to one of the existing de-duplicated
pages. On a match, the physical page being scanned is freed,
and the virtual page that was mapped to the freed physical
page is now mapped to the de-duplicated page in the stable
tree. The new mapping is rendered Copy-on-Write (COW)
to prevent a process from unilaterally modifying contents of
a de-duplicated page.

If there is no match in the stable tree, a checksum of the
page’s contents is computed. It is then compared against the
page’s checksum that was computed during the last scan.
Checksum from the previous scan is stored in the metadata
of the physical page. A mismatch between the checksums
signifies that the page has been modified, and thus, it will
not be considered for de-duplication in the current scan.
Otherwise, pages of the unstable tree are searched for a
match with the given page’s content i.e., compared with the
already identified candidates for de-duplication. On a match,
the physical page frame in the unstable tree is freed. The
virtual address range mapping onto the freed physical page
is now mapped to the page that is being scanned. As before,
the mapping is rendered COW. The de-duplicated copy is
then added to the stable tree. If there was no match, the
scanned page is added to the unstable tree. This page will
then be compared with other candidates during the scan.

The stable tree is constructed once when KSM is ini-
tialized. However, the unstable tree is reconstructed during

each scan to avoid comparisons with recently updated pages.
Pages in the unstable tree are not write-protected, and their
content may have been updated between scans.

B. Non-uniform memory access (NUMA)

Modern servers often sport 2-4 sockets, with one CPU
in each socket [1], [2], [4]. Each socket has local memory
(DRAM) attached to it. Sockets themselves are connected
via cache-coherent high-speed interconnects over the moth-
erboard. All CPUs and all memory across the sockets are
logically managed as a single system by OS. A CPU can
access both local memory and memory attached to any
other sockets (remote memory). However, the latency of
accessing remote memory is typically 1.5–2× higher than
that of accessing local memory [3], [4]. This gives rise to
non-uniform memory access or NUMA.

A goal of OS’s memory management is to reduce over-
heads due to remote memory accesses. For simplicity, we
will refer to the overhead of accessing remote memory as
NUMA-Tax. Linux provides tools like numactl and libnuma
library that allows users/programmers to explicitly bind
memory to specific NUMA nodes and migrate pages from
one node to other [17]. Linux also supports automatic page
migration via AutoNUMA [18]. AutoNUMA attempts to
migrate pages across NUMA nodes at runtime to minimize
NUMA-Tax. Importantly, it does so without user interven-
tion and induces page faults at regular intervals to identify
local and remote accesses. AutoNUMA migrates pages that
are accessed frequently from a remote CPU and avoids
migrating any pages that are accessed from different CPUs.
Following the same principle, AutoNUMA does not to
migrate de-duplicated pages.

III. NUMA IMPLICATIONS OF DE-DUPLICATION

We discover that memory management’s goal of better
memory consolidation through aggressive de-duplication can
conflict with its goal of keeping the NUMA-Tax low. This
conflict leads to performance variability, unfairness, and
priority subversion in the system.

The conflict arises since these objectives are pursued in
isolation which leads to unintended implications on the over-
all system’s behavior. For example, Linux’s KSM enables
high memory consolidation through de-duplication of pages
across NUMA nodes. However, doing so can uncontrollably
increase NUMA-Tax, if not careful. After a de-duplication,
accesses to the de-duplicated page would become remote
for all VMs, except for the ones running on the node where
it resides. We found that the NUMA-unawareness of KSM
leads to avoidable and unequal distribution of NUMA-Tax
across VMs in Linux/KVM world.

It is possible to disable de-duplication across NUMA
nodes, but that would hurt the goal of memory consolidation,
particularly in servers with many sockets. In an ideal world,
one would thus allow de-duplication across nodes but expect

260

no
de

-0

no
de

-1

VM-0 VM-1

remote memory

(NUMA-Tax)

no
de

-0

no
de

-1

VM-0

b
ef
or
e

af
te
r

private

free

duplicate (across nodes)

de-duplicated (copy-on-write)

VM-1

Figure 2: Effect of de-duplication on NUMA-Tax. Both VMs
access local memory prior to de-duplication (top). After de-
duplication (bottom), all merged pages are placed on node-0.

memory management to contain the ill-effects of NUMA-
Tax. In this work, we make progress toward this goal. We
start by quantifying the ill-effects of NUMA-Tax induced by
de-duplication in Linux/KVM.

A. Performance variability and unfairness

Observation: De-duplication across nodes unfairly penal-
izes some applications (VMs) due to NUMA-unaware place-
ment of de-duplicated pages.

We noticed that KSM usually places all de-duplicated
pages on a single node. We root cause this to the fact that
KSM chooses where to place a de-duplicated physical page
based on the order in which it scans processes, oblivious of
the NUMA considerations. As discussed in § II-A, when the
content of a page being scanned is identical to that of an
existing candidate page in the unstable tree, KSM always
retains the page being scanned and frees the one in the
unstable tree. When the page being scanned matches a page
in the stable tree, the one from the tree is retained. In either
case, which page to retain is decided by the order in which
KSM happens to scan address spaces, disregarding NUMA
implications. Also, KSM scans the entire address space of
a process at a time. Consequently, when two VMs contain
many pages with identical content, then pages belonging to
the VM that is scanned later are kept as de-duplicated pages
while those of the first VM are released. This leads to an
uncontrolled and unfair imposition of NUMA-Tax on one or
a subset of the VMs running on different nodes.

We demonstrate this behavior with a simple example.
Figure 2 shows a two-socket system running two VMs with
many identical read-mostly pages. The VMs are affined to
separate NUMA nodes i.e., VM-0 runs on node-0 and VM-
1 runs on node-1. Suppose KSM scans VM-1’s address
space before VM-0’s. In the first scan, KSM calculates the
checksum of their pages, and both KSM trees remain empty

(a) Normalized execution time

(b) Local/remote memory access ratio

Figure 3: Execution time and local/remote memory access
ratios of two identical instances of applications executing
on VMs on different NUMA nodes. Execution times are
normalized to those of Instance-0 s without KSM.

at the end of the scan. In the next scan, pages of VM-1 are
scanned and added to the unstable tree. In the same scan,
pages of VM-0 are also scanned and searched for a match
in the unstable tree. When VM-0’s pages match those of
VM-1 in the unstable tree, the pages of VM-0 residing
on node-0 are retained while VM-1’s copies on node-1 are
freed. This way, all de-duplicated pages get placed on node-
0. Consequently, VM-1 experiences high and an unfair share
of NUMA-Tax after de-duplication, while VM-0 continues
to enjoys local accesses.

We quantify the ill-effects of KSM on NUMA-Tax for
a set of applications on a two-socket server (§ V-A de-
tails methodology). We set up two virtual machines VM-
0 and VM-1, each executing an instance of the same
application concurrently. VM-0 executes Instance-0 while
VM-1 executes Instance-1. We bind the VMs to different
NUMA nodes and instantiate VM-1 one minute after VM-0.
Figure 3a reports the performance of each application. The
performance of each instance is normalized to the runtime
of Instance-0 of the given application without KSM.

When KSM is disabled, performances of both instances
are similar. Since instances run on different nodes, there is
little CPU and memory contention. However, when KSM
is enabled, we observe a significant performance difference
(16%-46%) among the instances of the same application. For
example, RandomAccess and CG in VM-1 slow down by
46% and 31% compared to when KSM was disabled while
they are unaffected in VM-0. Importantly, Instance-1 slows
down significantly in all cases.

Applications in VM-1 get unfairly slowed down because
VM-1’s pages get added first to the unstable tree. Therefore,

261

Figure 4: Throughput of two identical instances of BTree
running with different priorities with KSM.

VM-0’s pages are retained on node-0 after de-duplication.
Figure 3b shows the breakdown of application’s DRAM
accesses (i.e., after missing in the cache) into local and
remote memory. We observe that when KSM is enabled,
Instance-1 suffers from a high percentage of remote mem-
ory accesses while Instance-0 enjoys local accesses. The
large performance gap observed in Figure 3a is a direct
consequence of larger fractions of slow remote accesses
experienced by Instance-1.

B. Priority subversion

Observation: De-duplication subverts user’s priority goals.
KSM’s NUMA-unawareness makes it vulnerable to prior-

ity subversion. Priority subversion is the circumstance where
a higher priority process gets penalized by a low priority
process due to priority-unaware resource allocation [19].

To demonstrate an example of priority subversion due to
KSM, we execute two instances of an application BTree as
in the previous subsection. In addition, we assign different
priorities to the VMs. VM-0 runs with lowest priority with
its nice value set to 20, and VM-1 runs with highest priority
whose nice value is set to -20.

Figure 4 shows the effect of de-duplication by KSM on the
throughput. While both instances start with similar through-
put, that of the high priority instance quickly drops by more
than 15% as memory gets de-duplicated. Consequently, it
also takes longer to complete. The priority subversion is
also a side-effect of KSM’s behavior where scanning order
determines which nodes get to keep the de-duplicated pages.

Priority subversion is an unintended consequence of mem-
ory de-duplication on NUMA platforms. Unfortunately, there
is no way in Linux today for users to ensure that the notion
of priority is honored. While disabling de-duplication across
nodes is one option to avoid this problem, it gives up a
significant opportunity for memory consolidation.

C. Low responsiveness with large memory

Observation: KSM scales poorly with larger memory sizes.
Beyond NUMA, we noticed that KSM scales poorly to

large memory systems. This is due to the centralized nature
of KSM’s data structures. It maintains one set of trees for
the entire memory. As memory size grows, the height of

the trees grow. While scanning, KSM compares each page
with stable tree nodes and then (if needed) with unstable
tree nodes to identify de-duplicate candidates. The number
of comparisons grows with the height of the tree, which, in
turn, grows with the size of memory. In § V-D, we show
how KSM fails to de-duplicate memory quickly enough and
runs into Out-of-Memory (OOM) errors when the memory
size increases to hundreds of GiBs. In other words, if KSM
was more responsive, OOM could have been avoided.

IV. DESIGN AND IMPLEMENTATION

We now detail the design of nuKSM. Our design objec-
tives include 1© minimizing performance variability and un-
fairness due to memory de-duplication across NUMA nodes,
2© the ability to distribute NUMA-Tax based on the priority

of different processes to avoid priority subversion, and 3©,
finally, improving the responsiveness of de-duplication in
large memory systems. We implemented nuKSM in Linux
kernel version 5.4.0 by extending KSM.

A. Addressing performance variability and unfairness

nuKSM first strives to avoid paying the NUMA-Tax by
judiciously keeping a de-duplicated page on a NUMA node
that is expected to access the de-duplicated page often. This
is driven by the observation that an application pays the
NUMA-Tax only when accessing a page on a remote node.
An application would observe little impact of NUMA-Tax
if one of its infrequently accessed pages is de-duplicated
and is placed on a remote node. If it is not immediately
discernible which of the accessing application/VM is likely
to access a de-duplicated page more often, nuKSM evenly
distributes the NUMA-Tax among applications/VMs. This
policy is key to avoid unfairness in execution, and avoids
paying NUMA-Tax when possible.

We provide a simple example to illustrate this policy
in practice. Let us consider two virtual machines, VM-0
and VM-1, that are running on separate NUMA nodes and
sharing five pages P0, P1, P2, P3, and P4. Let us also assume
that P0 is more frequently accessed by VM-0 and P1 is more
frequently accessed by VM-1. Also assume that P2 and P3
are accessed by both VMs with similar frequency, and P4
is inactive. In this example, nuKSM would place P0 close
to VM-0, P1 close to VM-1. For an even distribution of
NUMA-Tax, it would place one of P2 & P3 close to one
VM and the other close to the other. Since P4 is inactive, its
placement has little impact on performance. nuKSM could
place P4 in either of the nodes. This way, two out of the
four active pages will be local to each VM, and NUMA-Tax
is evenly distributed for the rest.

An implementation of this policy requires knowing the
access frequency of pages to be de-duplicated. Typically, this
information is obtained from page table access bits, which
are set by the hardware on an access to the corresponding
pages. The OS can periodically clear access bits and check

262

them after a while to find which pages are being accessed
frequently [10], [11], [20]. However, doing so would add
extra overhead to KSM. Further, prior works indicate that
this technique is expensive on large memory systems due to
the high overhead of traversing the page tables [11], [20].

In nuKSM, we instead leverage the information already
available to the page reclamation subsystem of Linux. The
page reclamation algorithm is a variant of the well-known
clock algorithm [21]. It maintains two bits per page, namely
accessed and referenced. Based on the value of these
bits, pages are divided across two lists active and inactive.
Pages that are infrequently accessed are accumulated in the
inactive list while the rest are kept in the active list. Under
memory pressure, pages from the inactive list are swapped
to the storage. Implementation of the page reclamation
and its heuristics have been optimized over the years by
the Linux community. We piggyback on the hints about
a page’s access frequency already available from the page
reclamation system to realize nuKSM’s policy of which
copy of pages with identical content to retain.

As an example, assume nuKSM is to de-duplicate two
pages with same contents from two nodes– say P0 from
node-0 and P1 from node-1. nuKSM first checks which of
the pages are frequently accessed, i.e., part of the active
list. If only one of them is active (say P0), we use it as
the de-duplicated page and free the other copy (P1). If both
P0 and P1 are in active list, nuKSM uses a round-robin
policy to determine which copy to free. For example, if
the first of two active pages are placed on node-0 while
de-duplicating, the next one would be placed on node-1,
and so on. This ensures that the frequently accessed pages
are evenly distributed across nodes. Finally, if both pages
are inactive, they are also distributed evenly across nodes
in round-robin. It helps in balancing memory allocation to
avoid thrashing a particular node. However, there is typically
no performance implications of placement of inactive pages.

B. Priority based memory de-duplication

Fairness and performance predictability are not always the
most important objectives in certain execution environments.
For such cases, nuKSM enables users to configure which
process (VM) should enjoy more local memory accesses.
If the priority-based de-duplication is enabled, nuKSM
distributes NUMA-Tax in the ratio of the relative priorities
of the processes that share the de-duplicated pages.

Instead of introducing a new priority scheme, nuKSM
inherits Linux’s process priority i.e., nice values. The nice
value is an integer between -20 (highest priority) to 20
(lowest priority). It indicates relative priorities of different
processes that form the basis of CPU sharing. nuKSM
repurposes the nice values while de-duplicating pages under
this policy. For simplicity, we add 21 to each nice value to
convert it to a non-zero positive integer; we refer to these
scaled values as snice. When de-duplicating pages, we first

calculate nuShare– a positive real number between 0 and 1
– that captures the preference of the current process whose
page is being scanned, relative to all processes with whom
it would share the de-duplicated page. nuShare of a page p
is calculated using snice values as follows:

nuShare(p) = 1− snice(current)∑
∀ task using p snice(task)

A high value of nuShare signifies a higher preference of
making the de-duplicated page local to the process that is
currently being scanned. The nuShare is then compared to
a pseudo-random number between 0 and 1. If the value of
nuShare is larger than the random number, then the page
being scanned is retained as the de-duplicated copy. This
ensures local access to the de-duplicated page from the
process being scanned. Otherwise, we use the other page
(from either the stable or the unstable tree) as the de-
duplicated page and free the current page. This strategy
ensures that the distribution of de-duplicated pages across
NUMA nodes converges to the ratio of priority of different
processes when many pages are de-duplicated.

C. Enhancing responsiveness

Independent of nuKSM’s primary goal of making de-
duplication NUMA-aware, it also strives to scale de-
duplication better to large memory systems. As discussed
earlier, KSM’s low responsiveness is rooted in having one
set of trees for the entire memory.

In nuKSM, instead of using one stable and one unsta-
ble tree, we use two forests i.e., many stable and many
unstable trees, represented as an array of trees. The index
of a page in the array is a function of the checksum
of that page’s content (i.e., index = page checksum(page)
% number of trees). Note that two pages with identical
contents will have the same checksum and, thus, index into
the same stable and unstable tree. Hence, nuKSM does
not miss any de-duplication opportunity. Using checksum-
based indexing allows distributing pages across many sets
of trees. Consequently, it limits the height of each tree,
which in turn, reduces the number of comparisons required
while searching for a match in a tree. In other words, this
approach automatically reduces the number of unnecessary
page comparisons since two pages are never compared if
they index into different trees.

Using a forest is a scalable design since the number of
trees in the forest can be adjusted based on the size of
physical memory. For example, if memory size is doubled,
doubling the number of trees would ensure that the average
height of a tree does not increase, and thus, the number
of comparisons remains similar. However, unnecessarily
using a very large number of trees can introduce overhead,
especially because the unstable trees are flushed and recon-
structed from scratch in each scan. We empirically found

263

Figure 5: Memory de-duplication workflow in nuKSM.

that using one stable and one unstable trees per 100 MiB
memory provides a reasonable balance between the cost and
benefits of using a de-centralized forest-based approach.

D. Putting it all together

We depict the entire workflow of nuKSM with Figure 5.
nuKSM starts by periodically scanning address spaces from
the list of registered processes. The VMs, i.e., KVM pro-
cesses register their entire memory by default. The unstable
trees are flushed prior to starting a new scan. A checksum of
a page’s contents is used to index into the forest of stable
and unstable trees. The corresponding stable and unstable
trees are then searched for de-duplication opportunities. On
a match, the decision on which copy to retain and which
one to free depends upon user settings. By default, nuKSM
uses the principle described in § IV-A to ensure equitable
distribution of NUMA-Tax for fairness. However, it can be
changed to the one based on priority (§ IV-B), with a sysfs
configuration knob. The de-duplicated page is added to the
stable forest. If the page does not match in either trees, it
is added to the unstable forest.

E. Scaling to many sockets

While we have limited our discussion so far to only two
sockets for ease of exposition, all three design aspects of
nuKSM extend seamlessly beyond two sockets. First note
that the priority-based memory de-duplication (§ IV-B) is
agnostic to the number of sockets. Its calculation of nuShare
that dictates distribution of NUMA-Tax is unaffected by
the number of sockets. Similarly, the number of trees for
improving de-duplication’s responsiveness (§ IV-C) is de-
termined solely by the amount of physical memory.

That leaves us to discuss how nuKSM’s algorithm for
fairness (§ IV-A) scales to many sockets. Let us consider N
processes, each in its own VM, are running on K sockets.
Let us also assume that each of those N processes has a
page with the same content that nuKSM would de-duplicate.
Now, note that like KSM, nuKSM considers only two can-
didate pages for de-duplication at a time. A candidate page
may already be a de-duplicated copy itself. Let us consider
that at a given time nuKSM has already de-duplicated N -1
pages with duplicate contents from K-1 nodes onto a single

de-duplicated page, say Px. Now suppose that nuKSM finds
the candidate page for de-duplication, Py , having the same
content as Px and is currently placed on node K.

nuKSM should decide which one of these two copies
to retain based on the same principle of minimizing the
expected NUMA-Tax. Specifically, nuKSM considers three
conditions. 1© Both candidate pages are in the active lists
of their respective NUMA nodes, 2© only one of the pages is
in the active list, and 3© both the pages are in the inactive
lists. Under the first condition, i.e., when both Px and Py are
in the active list, nuKSM tries to evenly distribute the de-
duplicated pages across the NUMA nodes where the original
pages resided before de-duplication. To achieve this, nuKSM
retains the page Py with probability p, where p = 1/K.
nuKSM generates a pseudo-random number between 0 and
1. If it is smaller than p, then the page Py is retained and
Px is freed. Otherwise, nuKSM does the opposite. Under
the second condition, nuKSM keeps the page that is in
active list while freeing the other, as usual. If both pages are
in the inactive list then there is no expected performance
implications of NUMA placement. Still, nuKSM uses the
same technique as used in the first condition, to evenly
distribute the de-duplicated pages across NUMA nodes.

We empirically evaluated nuKSM’s scalability beyond
two VMs [22] but omit details here.

V. EVALUATION

We evaluate nuKSM to answer the following ques-
tions: (1) how does nuKSM’s NUMA-aware memory de-
duplication perform with respect to fairness and perfor-
mance variations? (2) how does nuKSM’s priority-based
de-duplication help users in controlling the distribution of
NUMA-Tax? and (3) how responsive is nuKSM in exploit-
ing de-duplication opportunities in large memory systems?

A. Methodology

We conduct experiments on a dual-socket Intel Xeon Gold
6140 (Skylake) server with 18 cores and 192 GiB memory
per socket. The processor runs at a base frequency of 2.30
GHz. We disable turbo boost and hyperthreading to min-
imize performance variations. We use Linux v5.4.0 as the
kernel running in an Ubuntu18.04 guest OS, and the same as

264

Hardware platform
Model 2-socket Intel Xeon Gold 6140
CPU cores 18 cores per socket @ 2.30GHz
Cache 25MiB shared L3 cache
Memory DDR4-2666, 192GiB per socket

Latency (in ns): 89 (local), 139 (remote)
Bandwidth (GiB ps): 110 (local), 51 (remote)

Benchmarks
XSBench [23] A mini-app representing a key computation kernel

of the Monte Carlo neutron transport algorithm
memory footprint: 11 GiB, thread count: 4

MySQL [24] A popular database service, benchmarked with
100 sysbench clients using in-memory tables
memory footprint: 20 GiB, thread count: 1

BTree [25] Random lookups in a B+ tree
memory footprint: 5.6 GiB, thread count: 1

RandomAccess Random lookups in a large array
memory footprint: 2.8 GiB, thread count: 1

CG [26] Implementation of congruent gradient algorithm
memory footprint: 3.5 GiB, thread count: 4

Table I: Details of the evaluation platform and benchmarks.

the host with KVM. We extend the same kernel to implement
nuKSM. Both KSM and nuKSM operate at the same rate,
scanning 1K pages every 100 milliseconds. Each VM is
configured with four vCPUs and 30 GiB memory, unless
specified otherwise. To execute a VM on a specific node,
we bind its memory and vCPUs to the memory and physical
CPUs of that node. In all experiments, VM-0 runs on node-
0 and executes Instance-0 of the applications, while VM-1
runs on node-1 and executes Instance-1. We evaluate with a
mix of real-world databases and high-performance comput-
ing applications, and memory-intensive micro-benchmarks
that are sensitive to NUMA. Table I provides further details
of our evaluation platform and workloads. Appendix § A
provide instructions to reproduce the results.

B. Memory de-duplication for fairness

We first evaluate how nuKSM’s NUMA-awareness helps
in moderating arbitrary performance variability and in en-
suring fairness among co-running VMs. We conduct an
experiment similar to the one discussed in § III-A. Two
VMs running identical applications were placed on different
nodes. As seen in Figure 6a, KSM introduces high perfor-
mance variability and thus, unfairness amongst applications
running on different VMs, ranging from 15% performance
difference between two instances of MySQL to 46% for
those of RandomAccess. In contrast, the difference is neg-
ligible with nuKSM. At most 4% variability was observed
for RandomAccess.

Figure 6b shows the percentages of local and remote
memory access for both instances of each application, with
KSM and nuKSM, respectively. As discussed in § III-A, dif-
ferent instances of an application witness different amounts
of remote memory accesses under KSM. However, with
nuKSM, the remote access percentages are almost equal
across both the instances for all applications. This confirms
that nuKSM distributes NUMA-Tax fairly that helps to avoid
variability and unfairness in application performances.

(a) Runtime normalized to Instance-0 when KSM is disabled

(b) Local/remote memory access ratio

Figure 6: Performance variability and local/remote access
ratios of two identical application instances (0 and 1) with
KSM and nuKSM.

We quantify fairness (or lack thereof), using a well-
known metric that is used to measure performance in multi-
programmed workloads [27]. For two instances of an appli-
cation I0 and I1, fairness is calculated as follows:

fairness(I0 , I1) =
min(slowdown(I0), slowdown(I1))

max(slowdown(I0), slowdown(I1))

The slowdown is measured with respect to the baseline
system. In our case, the baseline represents the case where
de-deduplication (KSM) is disabled. Note that the value of
fairness lies between 0 and 1. A higher value of fairness
is desirable as it signifies low-performance variation.

Table II shows fairness in KSM and nuKSM. nuKSM is
close to an ideal system as the value of fairness is very close
to 1 in all cases. Specifically, nuKSM improves fairness
from 0.84 to 0.98 for XSBench, 0.85 to 0.98 for BTree,
0.85 to 0.99 for MySQL, and from 0.77 to 0.99 for CG.

Note that nuKSM improves fairness at the cost of

Benchmark fairness perf. of
nuKSM

memory saved (GiB)
KSM nuKSM KSM nuKSM

XSBench 0.84 0.98 0.99 10.76 10.79
BTree 0.85 0.98 0.99 5.18 5.29
MySQL 0.85 0.99 1.00 15.90 15.97
CG 0.77 0.99 0.99 2.40 2.39
Random-
Access 0.70 0.94 0.99 3.14 3.16

Table II: Amount of de-duplicated memory and fairness with
KSM and nuKSM. Rightmost column shows the combined
performance of nuKSM, normalized to KSM.

265

(a) BTree (b) XSBench (c) MySQL

Figure 7: Execution time of two instances of different applications executing on different nodes with different priorities in
KSM and nuKSM. Execution time is normalized to the runtime of Instance-0 with KSM.

config. VM-0 VM-1 % de-duplicated pages
nice snice nice snice VM-0 VM-1

C-10:1 -20 1 -11 10 91% 9%
C-5:1 -20 1 -16 5 83% 17%
C-1:1 -20 1 -20 1 50% 50%
C-1:5 -16 5 -20 1 17% 83%
C-1:10 -11 10 -20 1 9% 91%

Table III: Different priority configurations based on the nice
values of VMs and the fraction of de-duplicated pages local
to each VM in the corresponding configuration.

some performance loss of Instance-0 since it distributes
a portion of NUMA-Tax to it, instead of only burdening
Instance-1. However, the performance of Instance-1 im-
proves significantly. A keen reader may wonder if relative
degradation in the performance of Instance-0 outweighs the
gain of Instance-1. We therefore also show the normalized
combined runtime of nuKSM for each application. The
combined runtime is calculated by adding the total execution
time of both the instances of an application. For normaliza-
tion, the combined runtime in nuKSM is then divided by that
under KSM. Normalization helps discard instance-specific
runtime differences and provides a measure of overall system
throughput. Table II shows that the normalized combined
performance of nuKSM is similar to that of KSM. It
confirms that there is no overall performance loss in nuKSM.
In summary, nuKSM improves fairness significantly while
achieving the same overall performance as KSM.

Finally, in the last set of sub-columns of Table II, we
report memory saved by KSM and nuKSM. Clearly, nuKSM
is at least as effective as KSM in saving memory, while also
ensuring fairness.

C. Priority based memory de-duplication

In § III-B, we demonstrated how KSM subverts priority
goals with users having no control over the distribution of
NUMA-Tax. Here, we show how nuKSM enables users to
adjust the distribution of NUMA-Tax at a fine grain.

We create five different configurations based on the priori-
ties of two VMs, as shown in Table III. The table also shows
the fraction of de-duplicated pages that are local to each VM
after nuKSM completed de-duplication. Each configuration
is represented as C-P0:P1 where P0 denotes the relative
priority of VM-0 against the priority of VM-1 (i.e., P1).
nuKSM places de-duplicated pages in the same ratio as the

relative priority of the VMs. For example, in configuration
C-10:1, out of every 11 de-duplicated pages, 10 pages are
placed on node-0 while one page is placed on node-1.

Figure 7 shows our experiments for three applications
BTree, XSBench and MySQL for all five priority com-
binations in nuKSM. All configurations lead to similar per-
formance in KSM since it is oblivious to process priorities.
Hence, KSM is shown once for this experiment.

The relative priority of VM-0 decreases from left to right
in each sub-figure of Figure 7. Consequently, the fraction
of de-duplicated pages that is local to Instance-0 also
decreases from left to right i.e., from 91% in C-10:1 to
50% in C-1:1, and further to only 9% in C-1:10. At the
same time, the fraction of de-duplicated pages that is local
to Instance-1 increases from left to right. As expected, the
runtime of applications decreases when they receive more
local memory. For example, the runtime of Instance-0 of
BTree, XSBench and MySQL is 14%, 13% and 12% lower
than that of Instance-1 in configuration C-10:1 but higher
by a similar margin when their relative priorities are inverted
in configuration C-1:10.

Overall, Figure 7 shows that nuKSM can distribute
NUMA-Tax accurately and at a fine grain based on the rela-
tive priorities assigned by the user. Note that both instances
perform similarly in C-1:1. This configuration represents a
special case wherein both VMs run with the same priority,
and hence nuKSM ensures fairness.

D. Responsiveness in large memory systems

We now demonstrate how nuKSM’s de-centralized design
improves the responsiveness of memory de-duplication when
hundreds of GBs of memory is in use.

We run two 40 GiB instances of XSBench, and a
background job that allocates 2 GiB of physical memory
every 15 seconds. The background job allocates a total of
100 GiB memory and registers itself for de-duplication.
The background job simulates the effect of progressively
increasing memory pressure. All the workloads run on
node-0 to avoid NUMA effects. A node has about 180
GiB memory available. The combined memory footprint
of all three processes is slightly higher than the available
memory. Hence, the system will run out of memory if de-
duplication does not free memory fast enough, i.e., if not
responsive enough. To cater to the larger memory size,

266

(a) Free memory over time (b) De-duplicated memory over time (c) Average CPU utilization of KSM

Figure 8: Amount of free and de-duplicated memory, and average CPU utilization with KSM and nuKSM. KSM runs out of
memory at about 900 seconds due to increasing memory pressure. nuKSM runs to completion due to faster de-duplication.

we also configure the scan rate to 10K pages every 100
milliseconds in both KSM and nuKSM.

Figure 8 shows the results of this experiment with KSM
and nuKSM. Figure 8a shows that KSM throws an Out-of-
Memory (OOM) error at about 900 seconds. This happens
when the background job makes an allocation request but
free memory is unavailable. Figure 8b shows the amount of
memory de-duplicated over time which confirms that KSM
was unable to de-duplicate enough memory before OOM
occurred. Recall from Table II that KSM de-duplicated about
11 GiB of memory for XSBench in our experiments in
§ V-B. However, in that case, only 20 GiB of memory was
in use, while a total of 180 GiB of memory is in use here.
KSM’s larger trees due to larger memory size increase the
time to find pages with identical content. Consequently, de-
duplication slows down. Thus, the amount of memory de-
duplicated by KSM is hardly noticeable before the OOM in
Figure 8b. Repeated runs of the same experiment show that
if the kernel kills the background job due to OOM, instead
of XSbench, then memory from XSBench’s two instances
starts being de-duplicated from around 1000 seconds. But
that is too late to prevent OOM.

For the same experiment, nuKSM is able to run XSBench
instances and the background workload to completion, due
to faster de-duplication. Figure 8b confirms that nuKSM was
able to de-deuplicate more than 6 GiB memory within 900
seconds and about 40 GiB overall. Better responsiveness of
nuKSM, therefore, prevented the OOM. Figure 8c shows
the average CPU utilization of the de-deduplication thread.
It also shows that nuKSM de-duplicates memory more
efficiently than KSM since it is able to de-duplicate memory
faster with slightly lower CPU utilization than KSM.

E. Comparison with a related work: UKSM

We are unaware of any published work on the implications
of NUMA on de-duplication. However, to quantitatively
compare against a related academic work, we experimented
with UKSM [6]. UKSM prioritizes memory regions for
faster de-duplication based on the observation that spatially
co-located regions exhibit similar de-duplication behavior.
Unfortunately, UKSM fails to properly de-duplicate pages
across virtual machines (KVM). Specifically, it de-merges
(duplicates) pages immediately after de-duplication, even

Figure 9: Execution time of two instances of applications
executing on different NUMA nodes. Execution time is nor-
malized to the runtime of Instance-0 with KSM disabled.

on read accesses, and thus, provides no memory savings.
This forced our experiments to be limited to the bare-metal
system only. On bare-metal system, applications needed to
be modified to use madvise system call for registering
memory for de-duplication, unlike under KVM (§ II-A).

We conducted an experiment similar to the one discussed
in § III-A. We ran two instances of a given application
(here, RandomAccess and XSbench) on a bare-metal
system, each on a different NUMA node. We could not run
all workloads since each workload needs to be modified
to register its memory for de-duplication. This becomes
cumbersome for applications whose memory allocation is
not straightforward, e.g., incremental memory allocation
over time or the use of custom memory allocators.

Figure 9 shows the result. Like KSM, UKSM also in-
troduces large performance variability among applications
running on different nodes. We observed UKSM introduces
performance variability of up to 50%. In case of XSbench
the variability under UKSM is even more than that under
KSM. This is because pages in XSBench are de-duplicated
faster under UKSM, resulting in more pronounced NUMA
effect. In short, we quantitatively demonstrate that state-
of-art academic proposals suffer from the same NUMA-
unawareness as Linux’s KSM. In contrast, nuKSM (Fair)
distributes NUMA-Tax fairly to avoid performance vari-
ability. Further, nuKSM (Prio) shows how nuKSM enables
user to control the distribution of NUMA-Tax by making
Instance-1 high priority and thus, reduce its runtime.

267

VI. RELATED WORK

Techniques for better memory consolidation have been
extensively studied [6]–[9], [13], [14], [28]–[33]. VMware
ESX server pioneered content-based memory de-duplication
for virtualized environments [8]. It randomly selects pages
to check for a match in their hashes. On a match, full-page
comparison is performed before de-duplicating page con-
tents. Active memory de-duplication in IBM Power systems
uses a similar approach [16]. Xen hypervisor adopts a similar
approach [14], but uses a more efficient hashing scheme.
Only two 64-byte blocks at fixed locations from the pages
are hashed for similarity checks. In contrast, KSM uses full-
page comparisons without hashing. We extend KSM but
avoid unnecessary page comparisons using a collection of
comparison trees. Importantly, nuKSM is the first to report
the NUMA implications of de-duplication.

Difference Engine [7] employs a combination of sub-page
level sharing and in-core memory compression to achieve
high memory consolidation. Sub-page level sharing elimi-
nates redundant content at a finer granularity. Singleton [13]
extends KSM to eliminate redundancy due to multiple disk
caches in a virtual environment. Catalyst offloads the hash
computation to GPU for quickly finding de-duplication
candidates [34]. CMD [14] classifies pages based on access
characteristics and divides a page into eight sub-pages, each
with a dirty bit to indicate whether it was modified between
two scans. CMD uses separate stable and unstable trees
for each class to avoid unnecessary comparisons. However,
CMD requires dedicated hardware support to monitor system
I/O hints. SmartKSM [29] also classifies pages into groups
based on the type e.g., free, kernel, anonymous pages.
nuKSM’s approach of using many trees resembles that of
CMD and SmartKSM. However, nuKSM chooses which tree
to use based on the content of a page, and not based on the
type or access characteristics. Further, nuKSM limits the
height of trees by adapting the number of trees based on the
size of memory while the height of the trees in CMD and
SmartKSM can be arbitrarily high.

Researchers also proposed balancing memory sharing
and de-duplication overheads. For example, ksmtuned [35]
increases (or decreases) KSM’s scan rate when free memory
is below (or above) a certain threshold. This approach is
orthogonal to nuKSM and can work alongside it.

KSM++ [30] and XLH [31] use I/O hints from the host
file system for early detection of de-duplication opportunities
when VMs access backing stores to load files or data from
their virtual disks. The identified de-duplication candidates
are then prioritized for scanning to quciken de-duplication.
Satori [32] uses paravirtualization to de-duplicate guest’s
file-backed pages with sharing-aware virtual block devices in
Xen. A similar approach [36] was used to selectively merge
anonymous or free pages of different virtual machines.
However, paravirtualization makes wider adoption harder.

Different from these, our key contributions are the iden-
tification of NUMA implications of memory de-duplication
and then proposing ways to mitigate its ill-effects. Many of
these existing optimizations can work with nuKSM as well.
For example, specialized accelerators can be used for faster
checksum computation, and the scan rate of nuKSM can be
adjusted at runtime. Sub-page sharing, compression, and I/O
hints based de-duplication are compatible with nuKSM.

Researchers have reported several other conflicts among
memory management goals [10]–[12], [37]–[39]. For ex-
ample, large pages improve performance by reducing the
number of TLB misses [40], [41]. However, use of large
pages could preclude memory consolidation due to reduced
de-duplication opportunities [11], [37], [38] and internal
fragmentation [10], [11]. While large pages reduce address
translation overheads, they can increase NUMA-Tax due to
coarse-grained data placement [12], [39]. We highlight a
new conflict between the memory de-duplication and NUMA
management on multi-socket servers.

Previous works have shown that the difference in write
latency, due to COW fault on de-duplicated pages, can
possibly be exploited to leak information to co-located
VMs [42]–[44]. Several countermeasures have also been
proposed. Jens et al. [43] proposed deceiving the attacker
by placing various non-running binaries of applications in
the VM. Suzaki et al. [42] mentioned that a victim OS can
prevent such attacks by changing the runtime memory image
using code obfuscation We do not focus on the security
aspects of KSM assuming that previously proposed defenses
can be employed to overcome security concerns.

VII. CONCLUSION

We demonstrate that memory de-duplication can have
unintended consequence to NUMA overheads in multi-
socket servers. Linux’s memory de-duplication subsystem,
KSM, is NUMA unaware. Consequently, it can introduce
significant performance variations, unfairness, and subvert
process priority due to uncontrolled NUMA effects. We
introduce nuKSM that makes judicious decisions on the
placement of de-duplicated pages to reduce NUMA over-
heads and unfairness. nuKSM also enables users to control
the distribution of NUMA-Tax due to de-duplication across
concurrent VMs and processes. Further, nuKSM adopts a
de-centralized design to scale to larger memory sizes.

VIII. ACKNOWLEDGEMENT

This work is supported by grants from Semiconductor
Research Corporation (grant number 2019-IR-2925), and
from VMware Inc. Arkaprava is supported by a Young In-
vestigator Fellowship by Pratiksha Trust, Bangalore. Ashish
Panwar is supported by the Prime Minister’s Fellowship
Scheme for Doctoral Research, co-sponsored by Confedera-
tion of Indian Industry, Government of India, and Microsoft
Research India.

268

REFERENCES

[1] W. Bolosky, R. Fitzgerald, and M. Scott, “Simple but
effective techniques for numa memory management,” in
Proceedings of the Twelfth ACM Symposium on Operating
Systems Principles, ser. SOSP ’89. New York, NY, USA:
Association for Computing Machinery, 1989, p. 19–31.
[Online]. Available: https://doi.org/10.1145/74850.74854

[2] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum,
“Operating system support for improving data locality
on cc-numa compute servers,” in Proceedings of the
Seventh International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS VII. New York, NY, USA: Association for
Computing Machinery, 1996, p. 279–289. [Online]. Available:
https://doi.org/10.1145/237090.237205

[3] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quema, and M. Roth, “Traffic management: A
holistic approach to memory placement on numa systems,”
in Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 381–394.
[Online]. Available: https://doi.org/10.1145/2451116.2451157

[4] R. Achermann, A. Panwar, A. Bhattacharjee, T. Roscoe,
and J. Gandhi, “Mitosis: Transparently self-replicating
page-tables for large-memory machines,” in Proceedings of
the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 283–300. [Online]. Available:
https://doi.org/10.1145/3373376.3378468

[5] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory
density by using ksm,” in In OLS, 2009.

[6] N. Xia, C. Tian, Y. Luo, H. Liu, and X. Wang,
“UKSM: swift memory deduplication via hierarchical
and adaptive memory region distilling,” in 16th USENIX
Conference on File and Storage Technologies, FAST 2018,
Oakland, CA, USA, February 12-15, 2018, N. Agrawal
and R. Rangaswami, Eds. USENIX Association, 2018,
pp. 325–340. [Online]. Available: https://www.usenix.org/
conference/fast18/presentation/xia

[7] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat, “Difference
engine: Harnessing memory redundancy in virtual machines,”
in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08. USA:
USENIX Association, 2008, p. 309–322.

[8] C. A. Waldspurger, “Memory resource management in
vmware esx server,” SIGOPS Oper. Syst. Rev., vol. 36,
no. SI, p. 181–194, Dec. 2003. [Online]. Available:
https://doi.org/10.1145/844128.844146

[9] J.-H. Chiang, H.-L. Li, and T.-c. Chiueh, “Introspection-
based memory de-duplication and migration,” in Proceedings
of the 9th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, ser. VEE ’13. New
York, NY, USA: Association for Computing Machinery,
2013, p. 51–62. [Online]. Available: https://doi.org/10.1145/
2451512.2451525

[10] A. Panwar, S. Bansal, and K. Gopinath, “Hawkeye: Efficient
fine-grained os support for huge pages,” in Proceedings of
the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 347–360. [Online]. Available:
https://doi.org/10.1145/3297858.3304064

[11] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel,
“Coordinated and efficient huge page management with in-
gens,” in Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, ser. OSDI’16.
USA: USENIX Association, 2016, p. 705–721.

[12] J. Corbet, “Transparent huge pages, numa locality, and perfor-
mance regressions,” Online https://lwn.net/Articles/787434/.

[13] P. Sharma and P. Kulkarni, “Singleton: System-wide page
deduplication in virtual environments,” in Proceedings of the
21st International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC ’12. New York, NY,
USA: Association for Computing Machinery, 2012, p. 15–26.
[Online]. Available: https://doi.org/10.1145/2287076.2287081

[14] L. Chen, Z. Wei, Z. Cui, M. Chen, H. Pan, and Y. Bao,
“Cmd: Classification-based memory deduplication through
page access characteristics,” in Proceedings of the 10th
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, ser. VEE ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 65–76.
[Online]. Available: https://doi.org/10.1145/2576195.2576204

[15] L. K. Documentation, “Kernel samepage merging,” On-
line https://www.kernel.org/doc/html/latest/admin-guide/mm/
ksm.html.

[16] B. L. Rodrigo Ceron, Rafael Folco and H. Tsubamoto, “Power
systems memory deduplication,” Online http://www.redbooks.
ibm.com/redpapers/pdfs/redp4827.pdf, 2017.

[17] A. N. A. for LINUX, “Technical linux whitepaper,”
Online http://developer.amd.com/wordpress/media/2012/10/
LibNUMA-WP-fv1.pdf.

[18] J. Corbet, “Autonuma: the other approach to numa schedul-
ing,” Online https://lwn.net/Articles/488709/.

[19] Y. Patel, L. Yang, L. Arulraj, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dusseau, and M. M. Swift, “Avoiding
scheduler subversion using scheduler-cooperative locks,”
in Proceedings of the Fifteenth European Conference on
Computer Systems, ser. EuroSys ’20. New York, NY,
USA: Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3342195.3387521

[20] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical
page coloring-based multicore cache management,” in
Proceedings of the 4th ACM European Conference on
Computer Systems, ser. EuroSys ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 89–102.
[Online]. Available: https://doi.org/10.1145/1519065.1519076

[21] R. W. Carr, Virtual Memory Management. USA: University
of Michigan Press, 1984.

269

[22] A. Panda, “nuksm: Numa-aware memory de-duplication for
multi-socket servers,” Master’s thesis, Indian Insititute of
Science, August 2021. [Online]. Available: http://csl.csa.iisc.
ac.in/thesis/AkashPanda 2021.pdf

[23] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz,
“XSBench - the development and verification of a
performance abstraction for Monte Carlo reactor analysis,”
in PHYSOR 2014 - The Role of Reactor Physics toward
a Sustainable Future, Kyoto, 2014. [Online]. Available:
https://www.mcs.anl.gov/papers/P5064-0114.pdf

[24] M. Community, “Mysql benchmark tool,” Online https://dev.
mysql.com/downloads/benchmarks.html.

[25] M. Project, “Btree,” Online https://github.com/
mitosis-project/mitosis-workload-btree.

[26] D. Bailey, E. Barszcz, J. Barton, D. Browning,
R. Carter, L. Dagum, R. Fatoohi, P. Frederickson,
T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan,
and S. Weeratunga, “The nas parallel benchmarks,”
Int. J. High Perform. Comput. Appl., vol. 5,
no. 3, p. 63–73, Sep. 1991. [Online]. Available:
https://doi.org/10.1177/109434209100500306

[27] S. Eyerman and L. Eeckhout, “System-level performance
metrics for multiprogram workloads,” IEEE Micro, vol. 28,
no. 3, p. 42–53, May 2008. [Online]. Available: https:
//doi.org/10.1109/MM.2008.44

[28] S. Rachamalla, D. Mishra, and P. Kulkarni, “Share-o-meter:
An empirical analysis of ksm based memory sharing in
virtualized systems,” in 20th Annual International Conference
on High Performance Computing, 2013, pp. 59–68.

[29] L. Chen, Z. Wei, Z. Cui, M. Chen, H. Pan, and Y. Bao,
“Smartksm: A vmm-based memory deduplication scanner for
virtual machines,” SOSP Poster, 2013.

[30] K. Miller, F. Franz, T. Groeninger, M. Rittinghaus, M. Hil-
lenbrand, and F. Bellosa, “Ksm++: Using i/o-based hints
to make memory-deduplication scanners more efficient,” in
Proceedings of the ASPLOS Workshop on Runtime Envi-
ronments, Systems, Layering and Virtualized Environments
(RESoLVE’12), London, UK, March 3, 2012, 2012.

[31] K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand, and
F. Bellosa, “XLH: More effective memory deduplication
scanners through cross-layer hints,” in 2013 USENIX
Annual Technical Conference (USENIX ATC 13). San
Jose, CA: USENIX Association, Jun. 2013, pp. 279–
290. [Online]. Available: https://www.usenix.org/conference/
atc13/technical-sessions/presentation/miller

[32] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman,
“Satori: Enlightened page sharing,” in Proceedings of the
2009 Conference on USENIX Annual Technical Conference,
ser. USENIX’09. USA: USENIX Association, 2009, p. 1.

[33] Y. Fu, H. Jiang, N. Xiao, L. Tian, and F. Liu, “Aa-dedupe:
An application-aware source deduplication approach for cloud
backup services in the personal computing environment,” in
2011 IEEE International Conference on Cluster Computing,
2011, pp. 112–120.

[34] A. Garg, D. Mishra, and P. Kulkarni, “Catalyst: Gpu-assisted
rapid memory deduplication in virtualization environments,”
in Proceedings of the 13th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments,
ser. VEE ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 44–59. [Online]. Available:
https://doi.org/10.1145/3050748.3050760

[35] R. H. Documentation, “The ksm tuning service,”
Online https://access.redhat.com/documentation/en-us/
red hat enterprise linux/6/html/virtualization tuning and
optimization guide/sect-ksm-the ksm tuning service.

[36] E. Bugnion, S. Devine, and M. Rosenblum, “Disco: Running
commodity operating systems on scalable multiprocessors,” in
Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles, ser. SOSP ’97. New York, NY, USA:
Association for Computing Machinery, 1997, p. 143–156.
[Online]. Available: https://doi.org/10.1145/268998.266672

[37] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee, “Large
pages and lightweight memory management in virtualized
environments: Can you have it both ways?” in Proceedings
of the 48th International Symposium on Microarchitecture,
ser. MICRO-48. New York, NY, USA: Association for
Computing Machinery, 2015, p. 1–12. [Online]. Available:
https://doi.org/10.1145/2830772.2830773

[38] F. Guo, Y. Li, Y. Xu, S. Jiang, and J. C. S. Lui, “Smartmd:
A high performance deduplication engine with mixed
pages,” in 2017 USENIX Annual Technical Conference,
USENIX ATC 2017, Santa Clara, CA, USA, July 12-
14, 2017. USENIX Association, 2017, pp. 733–744.
[Online]. Available: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/guo-fan

[39] F. Gaud, B. Lepers, J. Decouchant, J. Funston,
A. Fedorova, and V. Quema, “Large pages may be
harmful on NUMA systems,” in 2014 USENIX Annual
Technical Conference (USENIX ATC 14). Philadelphia,
PA: USENIX Association, Jun. 2014, pp. 231–242.
[Online]. Available: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/gaud

[40] A. Basu, “Revisiting virtual memory,” Ph.D. dissertation,
University of Wisconsin-Madison, December 2013.

[41] V. Sri Sai Ram, A. Panwar, and A. Basu, “Trident: Harnessing
architectural resources forall page sizes in x86 processors,” in
Proceedings of the 54th International Symposium on Microar-
chitecture, ser. MICRO-54. New York, NY, USA: ACM,
2021.

[42] K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory
deduplication as a threat to the guest os,” in Proceedings
of the Fourth European Workshop on System Security,
ser. EUROSEC ’11. New York, NY, USA: Association
for Computing Machinery, 2011. [Online]. Available:
https://doi.org/10.1145/1972551.1972552

[43] J. Lindemann and M. Fischer, “A memory-deduplication
side-channel attack to detect applications in co-resident
virtual machines,” in Proceedings of the 33rd Annual ACM
Symposium on Applied Computing, ser. SAC ’18. New
York, NY, USA: Association for Computing Machinery,

270

2018, p. 183–192. [Online]. Available: https://doi.org/10.
1145/3167132.3167151

[44] J. Xiao, Z. Xu, H. Huang, and H. Wang, “Security implica-
tions of memory deduplication in a virtualized environment,”
in 2013 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2013, pp. 1–12.

APPENDIX

A. Abstract
The artifact provides the source of evaluated benchmarks

binaries and our Linux modifications. The exact invoca-
tion arguments and measurement infrastructure is provided
through bash and python scripts which allow reproducing
paper results on a two-socket Intel SkyLake (or similar)
machine with 380GiB of main memory.

B. Artifact check-list (meta-information)
• Algorithm: NUMA-aware Memory De-duplication on Multi-

socket Servers
• Benchmarks: XSBench, BTree, MySQL, CG, RandomAc-

cess. Source included.
• Compilation: GCC version 5.4.0
• Binary: Makefile included to compile binaries on x86 64.
• Data set: None.
• Hardware: We recommend a two-socket Intel Xeon Gold

6140 with 18 cores (36 threads) and 192GiB memory per-
socket (384GiB total memory) to reproduce results reported
in the paper. Other two-socket x86 64 servers with similar
memory and compute capability are expected to produce
comparable results.

• Run-time state: Populated by the scripts themselves.
• Execution: Using bash scripts on a Linux/KVM platform.

Scripts, to be executed on the host, require sudo privilege.
• Output: The artifact scripts produce a csv file for each figure

used in the paper.
• How much disk space required (approximately)?: 120GiB
• How much time is needed to prepare workflow (approxi-

mately)?: 60 minutes
• How much time is needed to complete experiments (ap-

proximately)?: 80 hours
• Publicly available?: Yes
• Workflow framework used?: None
• Archived (provide DOI)?: 10.5281/zenodo.5139278

C. Description
1) How to access: The artifact is available in the GitHub

repository https://github.com/csl-iisc/nuKSM-pact21-artifact as
well as at https://doi.org/10.5281/zenodo.5139278.

2) Hardware dependencies: We recommend a two-socket
Intel Xeon Gold 6140 with 18 cores (36 threads) and 192GiB
memory per-socket (384GiB total memory) to reproduce results
reported in the paper. Other two-socket x86 64 servers with
similar memory and compute capability are expected to produce
comparable results.

3) Software dependencies: The compilation environment,
scripts and benchmarks assume Ubuntu 18.04 LTS, which also
uses the Linux Kernel v5.4.0. Similar Linux distributions are
also expected to work. In addition to the packages shipped with
Ubuntu 18.04 LTS, additional packages need to be installed as
follows:

$ sudo apt-get install build-essential flex \
libncurses-dev bison libssl-dev \
libelf-dev libnuma-dev python3 git \
python3-pip wget kernel-package gfortran \
fakeroot ccache libncurses5-dev \
pandoc libevent-dev libreadline-dev \
python3-setuptools qemu-kvm virtinst \
bridge-utils libvirt-bin virt-manager

271

D. Installation
To install, either download the complete artifact from Zenodo

or clone the GitHub repository. It contains the source of all
benchmarks and scripts required to run the artifact.

1) Compiling binaries: Use the following commands to build
binaries on your system:

$ cd /path/to/nuKSM-pact21-artifact/
$ git submodule init
$ git submodule update
$ make

2) Installing nuKSM kernel: On your test machine, compile
and install the vmlinux binary from ./nuKSM-linux/.

$ cd nuKSM-linux/
$ git fetch --all
$ git checkout v5.4
$ cp -v /boot/config-$(uname -r) .config
$ make menuconfig
$ make -j $(nproc)
$ sudo make modules_install
$ sudo make install
$ git checkout nuKSM_SingleTree
$ make -j $(nproc)
$ sudo make modules_install
$ sudo make install
$ git checkout nuKSM_MultiTree
$ make -j $(nproc)
$ sudo make modules_install
$ sudo make install

3) Installing and Configuring a Virtual Machine: Install
a virtual machine using libvirt on your test machine. An example
using command line installation is provided below (choose ssh-
server when prompted for package installation). Create a user
named nuksm with password nuksm during installation.

$ cd VM_images/;

$ virt-install
--name ubuntu_nuksm_1 \
--ram 60000 --vcpus 4 \
--disk path=./ubuntu_nuksm_1.qcow2,size=50 \
--os-type linux \
--os-variant generic \
--network bridge=virbr0 \
--graphics none \
--console pty,target_type=serial \
--location ’http://archive.ubuntu.com/ubuntu/dists/\
bionic/main/installer-amd64/’ \
--extra-args ’console=ttyS0,115200n8 serial’

$ virt-clone --original ubuntu_nuksm_1 \
--name ubuntu_nuksm_2 --auto-clone
$ cd -

Create a network for the virtual machines:
$ cd resources/network_xml/
$ virsh net-define network-01.xml
$ virsh net-start network-01
$ cd -

Next, run the following command to generate and load the
required VM configurations. This will configure the IP, number
and the affinity of vCPUs and memory size of the VMs.

$ cd scripts
$ sudo python3 gen_vmconfigs.py 0 1
$ sudo ./load_vmconfigs.sh

Once the network is setup and the configurations are loaded,
restart the vms.
$ virsh shutdown ubuntu_nuksm_1
$ virsh shutdown ubuntu_nuksm_2
$ virsh start ubuntu_nuksm_1
$ virsh start ubuntu_nuksm_2

Login to the machines to setup the benchmarks inside the
VMs. IPs of ubuntu nuksm 1 will be 192.168.123.149 and of
ubuntu nuksm 2 will be 192.168.123.228. Perform the following
steps on both the VMs to setup the benchamrks and environment.

$ ssh nuksm@[IP OF THE VM]
$ sudo apt install net-tools mysql-server
libmysqlclient-dev sysbench git make gcc g++ gfortran
$ sudo systemctl disable mysql

Add these lines to /etc/mysql/mysql.conf.d/mysqld.cnf

tmp_table_size=20G
max_heap_table_size=20G

Switch to the root user to setup mysql user. Run the following
commands.
mysql -u root -p

mysql> CREATE USER "nuksm"@"localhost" IDENTIFIED BY
"nuksm";

mysql> CREATE DATABASE nuksmbench;
mysql> GRANT ALL PRIVILEGES ON nuksmbench.* TO

’nuksm’@’localhost’;
mysql> FLUSH PRIVILEGES;

Clone the repository https://github.com/csl-iisc/
nuKSM-pact21-artifact in /home/nuksm/nuKSM-artifact
and compile the benchmarks.

$ git clone https://github.com/csl-iisc/
nuKSM-pact21-artifact nuKSM-artifact
$ cd nuKSM-artifact
$ make

E. Experiment workflow
Scripts to launch experiments are present in the

./evaluation_script/ directory. Scripts are required
to be run by the root user.

1) Launching Fairness experiments: Boot the Linux kernel
v5.4.0, and run the following scripts.

cd evaluation_script/
bash run_evaluation_fairness.sh KSM_OFF
bash run_evaluation_fairness_perf.sh KSM_OFF
bash run_evaluation_fairness.sh KSM_ON
bash run_evaluation_fairness_perf.sh KSM_ON

Now boot with the Linux Kernel 5.4.0nuKSMSingleTree+ ker-
nel, and run the following scripts.

bash run_evaluation_fairness.sh nuKSM
bash run_evaluation_fairness_perf.sh nuKSM

272

Note: run_evaluation_fairness_perf.sh uses per-
formance counters to get local/remote memory access. It would
work only on Intel Skylake machines.

2) Launching priority inversion experiments: Boot from
Linux kernel v5.4.0, and run the following scripts.

bash run_priority_inversion.sh KSM_ON

Now boot from Linux kernel 5.4.0nuKSMSingleTree+, and run
the following scripts.

bash run_priority_nuksm.sh

3) Launching scalability experiments: We need to launch
these experiments automatically on machine startup to accurately
capture CPU utilization of KSM and nuKSM (we use ps to record
the average CPU utilization). First we re-configure to bind both
VMs to node-0 and edit the crontab script:

cd scripts/
python3 ./gen_vmconfigs.py 0 0
./load_vmconfigs.sh
crontab -e

Add the following line to crontab:

@reboot /path/to/nuKSM-pact21-artifact/
evaluation_script/crontab_script.sh

We need to limit the memory on the machine to 175 GiB in order
to run this experiment. To do that, we have to append mem=175G
to GRUB_CMDLINE_LINUX in /etc/default/grub.

Reboot the machine and wait for the experiment to finish. It
takes around 1600 seconds to get completed. Next, reboot with
Linux Kernel 5.4.0nuKSMMultiTree+ and wait for experiments to
finish. Now remove the added line from crontab, so that the next
reboot will not launch the experiment.

4) Gathering results: To compile results, execute:

cd /path/to/nuKSM-pact21-artifact/scripts/
bash gather_results.sh

This will produce a CSV file for each figure. All results are
redirected to ./results/ directory.

273

